Small, flashy catchments response to variation in rainfall profile shape
- Newcastle University, United Kingdom of Great Britain – England, Scotland, Wales (a.seawell2@newcastle.ac.uk)
Flash flooding has the potential for severe consequences but is much less well understood or predictable than longer duration flooding. It is important to improve understanding of patterns of rainfall and behaviour of responding catchments in order to manage flash flooding effectively. One aspect of rainfall that could potentially affect flood hydrographs is the temporal shape of rainfall profiles.
Design flood estimation in the UK is principally based on the FSR /FEH/ReFH methodology, which uses a symmetrical centre-loaded profile for rainfall. However, recent research undertaken during Roberto Villalobos Herrera’s PhD is that front-loaded and back-loaded rainstorms occur just as frequently as centre-loaded. My PhD seeks to test how different rain profile shapes change the river flow hydrograph and flooding across the catchment.
My PhD concentrates on small catchments which have typically been less studied and because they are likely to be responsive to short, intense rainfall that can cause flash flooding. Hydrological modelling has been undertaken for 24 identified study catchments using ReFH2.3 software, which is the standard flood estimation design software in the UK. Results indicate that use of symmetrical profiles risks underestimating potential flood peaks compared to back-loaded storms. Meanwhile, time-to-peak is typically shorter for frontloaded storms indicating the hydrograph rises faster, but lagtime is shorter for back-loaded storms indicating the peak flow occurs more quickly after the peak rain. As well as modelled responses, I have also begun identifying and analysing observed hydrographs for selected study catchments to see if these show any pattern in their response to rainfall profile shapes.
How to cite: Seawell, A.: Small, flashy catchments response to variation in rainfall profile shape, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1538, https://doi.org/10.5194/egusphere-egu24-1538, 2024.