EGU24-15448, updated on 16 Sep 2024
https://doi.org/10.5194/egusphere-egu24-15448
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Multi-year aboveground dataset of minirhizotron facilities on a cropland site with two soil types in Western Germany

Thuy Nguyen, Gina Lopez, Sabine Seidel, Lena Lärm, Felix Bauer, Anja Klotzsche, Andrea Schnepf, Thomas Gaiser, Hubert Hüging, and Frank Ewert
Thuy Nguyen et al.
  • University of Bonn, Institute of Crop Science and Resource Conservation, Crop Science, Bonn, Germany (tngu@uni-bonn.de)

Improved understanding of crops’ response to soil water stress is important to advance soil-plant system models and to support crop breeding, crop and varietal selection, and management decisions to minimize negative impacts. Studies on eco-physiological crop characteristics from leaf to canopy for different soil water conditions and crops are often carried out at controlled conditions. In-field measurements under realistic field conditions and data of plant water potential, its links with CO2 and H2O gas fluxes, and crop growth processes are rare. Here, we presented a comprehensive data set collected from leaf to canopy using sophisticated and comprehensive sensing techniques (leaf chlorophyll content, hourly leaf stomatal conductance and photosynthesis, canopy CO2 exchange, sap flow, and canopy temperature) including detailed crop growth characteristics based on destructive methods (seasonal dynamics of crop height, leaf area index, above-ground biomass, and yield). Data were acquired under field conditions with contrasting soil types, water treatments, and different cultivars of wheat and maize. The data from 2016 up to now will be made available together with the below-ground data. This dataset produced under field conditions is unique and could be used by different users (agronomists, hydrologists, crop modelers, breeders, etc.) for studying soil/water-plant relations and improving soil-plant-atmospheric continuum models.

How to cite: Nguyen, T., Lopez, G., Seidel, S., Lärm, L., Bauer, F., Klotzsche, A., Schnepf, A., Gaiser, T., Hüging, H., and Ewert, F.: Multi-year aboveground dataset of minirhizotron facilities on a cropland site with two soil types in Western Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15448, https://doi.org/10.5194/egusphere-egu24-15448, 2024.