EGU24-15605, updated on 24 Mar 2024
https://doi.org/10.5194/egusphere-egu24-15605
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Establishing a Germany-wide Standardized Indication Map Representing the Flood Situation Caused by Heavy Rainfall

Lukas Wimmer, Michael Hovenbitzer, and Patrick Merita
Lukas Wimmer et al.
  • Federal Agency for Cartography and Geodesy (BKG), Germany

Recent studies on climate change show an increasing trend in the frequency of extreme weather events (IPCC, 2021; Tradowsky et al., 2023). These include storms with high-intensity precipitation, known as heavy rainfall. During those events the amounts of precipitation can be so high in a very short period of time that catastrophic flooding can also develop far away from rivers and lakes. Heavy rainfall events have occurred more frequently in Germany in recent years, resulting in severe damage and therefore focusing attention on risk management and prevention.

Contributing to an optimal preparation for the consequences of heavy rainfall events the Federal Agency for Cartography and Geodesy (BKG) is working with federal and state authorities to develop a Germany-wide indication map representing simulated flood situations after heavy rainfall events based on standardized guidelines. Once the mapping has been completed within the first half of 2024, it will be freely available as OpenData to politicians, the public administration and the general public for damage prevention and civil protection.

Geodata of the federal and state governments are essential for the hydronumerical two-dimensional modelling. A digital terrain model with a grid width of one meter forms the basis. Road culverts with corresponding dimensions, 3D building models, pumping stations as well as land cover data representing the surface roughness are integrated into this model in order to achieve a hydrologically effective modification and thus a realistic discharge.

The heavy rainfall indication map shows realistic simulation events for possible flooding scenarios that follow the heavy rainfall index according to Schmitt et al., 2018. The index describes the hazardous character of heavy rainfall events based on the return period and is commonly used in heavy rainfall risk communication by German federal and state authorities. Two scenarios are simulated: First, a 100-year event based on KOSTRA data from the German Weather Service (DWD), a dataset including regionalized precipitation heights as a function of precipitation duration and annularity. Second, an extreme heavy rainfall event with a precipitation of 100 mm/h. For both scenarios flood depths, flow velocities and flow directions are simulated.

The indication map for heavy rainfall provides an initial assessment of the risk potential, which, in combination with existing local expertise, should considerably simplify the planning of measures. It serves as an important tool for identifying areas at risk from heavy rainfall. This enables local authorities, planners and emergency services throughout Germany to derive appropriate measures, both preventively and in the event of an actual disaster.

 

References

Intergovernmental Panel on Climate Change (Ed.): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, <doi:10.1017/9781009157896>.

Schmitt, T. G. et al.: Einheitliches Konzept zur Bewertung von Starkregenereignissen mittels Starkregenindex, KA Korrespondenz Abwasser, Abfall, 2018(65), Nr. 2.

Tradowsky, J.S., Philip, S.Y., Kreienkamp, F. et al.: Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021. Climatic Change 176, 90 (2023). <https://doi.org/10.1007/s10584-023-03502-7>.

How to cite: Wimmer, L., Hovenbitzer, M., and Merita, P.: Establishing a Germany-wide Standardized Indication Map Representing the Flood Situation Caused by Heavy Rainfall, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15605, https://doi.org/10.5194/egusphere-egu24-15605, 2024.