EGU24-15642, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-15642
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Tectono-metamorphic interaction between the upper mantle and lower crust during continental rifting in the western Betic Cordillera

Károly Hidas1, Juan Díaz-Alvarado2, Luis González-Menéndez1, Antonio Azor3, and Antonio Pedrera1
Károly Hidas et al.
  • 1Instituto Geológico y Minero de España (IGME), CSIC, Calle de Ríos Rosas 23, 28003 – Madrid, Spain
  • 2Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Av. del Alcalde de Móstoles, 28933 – Móstoles, Spain
  • 3Departamento de Geodinámica, Universidad de Granada, Avenida de la Fuente Nueva s/n, 18071 – Granada, Spain

Recent geological mapping in the Ronda peridotites (Betic Cordillera, S Spain) has unveiled a consistent field correlation between lower crustal metamorphic units and specific tectono-metamorphic domains of the ultramafic massif. Mylonitic and highly tectonized spinel ±garnet peridotites (i.e., Grt-Spl mylonite and Spl tectonite domains) –that are considered to originate from a thick continental lithosphere– are in contact with garnet-bearing gneisses (i.e., kinzigites of the Jubrique unit) along a narrow but continuous mylonitic shear zone. Phase equilibrium calculations indicate that these metamorphic rocks align with an initial continental setting characterized by normal crustal thicknesses, which underwent two melting events. The first melting occurred at the base of the lower crust, while the second one took place at shallower crustal conditions and led to a more restricted melt production. By contrast, the spinel ±plagioclase peridotites (i.e., Pl-tectonite domain) –that are stable only at shallowest mantle levels within a highly extended continental lithosphere– are consistently found exposed in contact with heterogeneous granites and migmatites that form part of the Guadaiza crustal unit. According to new thermodynamic modeling, this migmatitic series record a single melting event characterized by a moderate melt production at the base of an extremely thin continental crust. The systematic correlation observed between the crustal metamorphic units and specific ultramafic domains of the Ronda peridotites –consistently overlaying the mantle rocks– indicates that their juxtaposition primarily resulted from the severe extension of the continental lithosphere.

Previous and new U-Pb radiometric dating of zircons from gneisses, migmatites, and heterogeneous granites show that extensional processes, crustal anatexis, and melt stagnation occurred at around 280 Ma. Considering the structural position and correlation between mantle and crustal rocks, these radiometric ages suggest that a Permian high-temperature / low- to medium-pressure event uniformly affected the crustal units over the Ronda peridotites. This event coincided with the formation of characteristic ultramafic mineral assemblages in the Ronda massif, providing evidence for the interaction between upper mantle rocks and lower- to mid-crustal metamorphic rocks during that period.

This research received funding from the Agencia Estatal de Investigación of the Ministerio de Ciencia e Innovación (AEI, MICINN, Spain) under the grant no. PID2020-119651RB-I00/AEI/10.13039/501100011033.

How to cite: Hidas, K., Díaz-Alvarado, J., González-Menéndez, L., Azor, A., and Pedrera, A.: Tectono-metamorphic interaction between the upper mantle and lower crust during continental rifting in the western Betic Cordillera, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15642, https://doi.org/10.5194/egusphere-egu24-15642, 2024.