EGU24-15849, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-15849
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Urgent Computing Integrated Services for Earthquakes 

Rut Blanco-Prieto1, Marisol Monterrubio-Velasco1, Marta Pienkowska2, Jorge Ejarque1, Cedric Bhihe1, Natalia Zamora1, and Josep de la Puente1
Rut Blanco-Prieto et al.
  • 1Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain
  • 2ETH Zurich, Zurich, Switzerland

The Urgent Computing Integrated Services for Earthquakes (UCIS4EQ) introduces a fully automatic seismic workflow centered on rapidly delivering synthetic assessments of the impact of moderate to large earthquakes throughout physics-based forward simulations. This novel approach links High-Performance Computing (HPC), High-Performance Data Analytics (HPDA), and highly optimized numerical solvers. Its core objective lies in performing numerical simulations either during or right after an earthquake, accomplishing this task within a short timeframe, typically spanning from minutes to a few hours.

During multi-node execution, PyCOMPSs orchestrates UCIS4EQ’s distributed tasks and improves its readiness level towards providing an operational service. UCIS4EQ coordinates the execution of multiple seismic sources to account for input and model uncertainties. Its comprehensive scope provides decision-makers with numerical insights into the potential outcomes of post-earthquake emergency scenarios.

The UCIS4EQ workflow includes a fast inference service based on location-specific pre-trained machine learning models. Such learned models permit a swift analysis and estimation of the potential damage caused by an earthquake. Leveraging advanced AI capabilities endows our workflow with the  ability to rapidly estimate a seismic event's impact. Ultimately it provides valuable support for rapid decision-making during emergencies.

Through the integration of high performance computational techniques and pioneering methodologies, our hope is to see UCIS4EQ emerge as a useful instrument to make agile and well-informed post-event decisions in the face of seismic events.

With this study, we account for UCIS4EQ's continuous development through a number of case studies. These case studies will shed light on the most recent developments and applications of urgent computing seismic workflow, demonstrating its efficacy in providing rapid and precise insights into earthquake scenarios.

How to cite: Blanco-Prieto, R., Monterrubio-Velasco, M., Pienkowska, M., Ejarque, J., Bhihe, C., Zamora, N., and de la Puente, J.: Urgent Computing Integrated Services for Earthquakes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15849, https://doi.org/10.5194/egusphere-egu24-15849, 2024.