EGU24-15970, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-15970
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Paleostress inversion of fault slip data: what is the problem?

Christophe Pascal
Christophe Pascal
  • Ruhr University Bochum, GMG Institute, Bochum, Germany (christophe.pascal@rub.de)

Paleostress inversion methods based on fault slip data (i.e. “fault slip inversion methods” or FSIMs) were formalised fifty years ago to become, shortly after, classical tools in structural geology and tectonics. The great popularity quickly gained by the methods was as remarkable as the enduring scepticism they prompted in the geological community. FSIMs belong to the rather narrow collection of methods, which allow for bridging traditional field observations and measurements (of fault planes and their respective slickenlines in the present case) to the stress tensor, a complex mathematical object. The latter statement highlights the originality of the approach and, perhaps, the roots of FSIM scepticism: stress are “observed” (or derived from observation of the nature) and not “measured” with the help of physical instrumentation, as it is traditionally done.

FSIMs are thus methods that involve mathematical processing of field data after adequate encoding of these. They rely primarily on the so-called “Wallace-Bott hypothesis”, which assumes parallelism between the measured fault stria and the computed maximum resolved shear stress, and on additional background conditions. The purpose of the present contribution is to discuss the limits of FSIMs in the light of their theoretical background and of realistic geological situations. The discussion will mostly focus on key-issues (e.g. is the stress restored by FSIMs in agreement with the formal definition of mechanical stress?) and will try to propose some future research tracks.

How to cite: Pascal, C.: Paleostress inversion of fault slip data: what is the problem?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15970, https://doi.org/10.5194/egusphere-egu24-15970, 2024.