EGU24-15999, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-15999
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Sampling the diurnal and annual cycles of Earth’s energy imbalance with constellations of satellite-borne radiometers

Thomas Hocking1,2, Thorsten Mauritsen1,2, and Linda Megner1,2
Thomas Hocking et al.
  • 1Department of Meteorology, Stockholm University, Sweden
  • 2Bolin Centre, Stockholm University, Sweden

The Earth’s energy imbalance (EEI), i.e. the difference between incoming solar radiation and outgoing reflected and emitted radiation, is the one quantity that ultimately controls the evolution of our climate system. Despite its importance, the exact magnitude of the energy imbalance is not well known, and because it is a small net difference of about 1 Wm−2 between two large fluxes (approximately 340 Wm−2), it is difficult to measure directly. There has recently been a renewed interest in applying wide-field-of-view radiometers onboard satellites to measure the outgoing radiation, and hence deduce the global annual mean energy imbalance.

Here we investigate how to sample with a limited number of satellite orbits, in order to correctly determine the global annual mean imbalance. Using observational and model data, we have investigated the importance of the local and global diurnal cycles, as they are observed by a satellite, in the determination of the EEI. We simulate satellites in polar (90° inclination), sun-synchronous (98°) and precessing orbits (73°, 82°), as well as constellations of these types of satellite orbits. We present the results of ongoing work concerning different orbits, and how they affect the estimated global annual mean EEI.

How to cite: Hocking, T., Mauritsen, T., and Megner, L.: Sampling the diurnal and annual cycles of Earth’s energy imbalance with constellations of satellite-borne radiometers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15999, https://doi.org/10.5194/egusphere-egu24-15999, 2024.