EGU24-16155, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-16155
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Effect of irrigation on joint evolution of water resources and hydroclimate variables under climate change

Pedro Arboleda1, Agnès Ducharne1, Pierre Tiengou1, and Frédérique Cheruy2
Pedro Arboleda et al.
  • 1Sorbonne Université, METIS-IPSL, UMR 7619, CNRS, Paris, France
  • 2Laboratoire de Météorologie Dynamique, IPSL, UMR 8539, CNRS, Paris, France

Irrigation is one of the main human landscape management activity, and has seen a dramatic increase during the XXth century, with a direct local increasing effect on soil moisture (SM) and evapotranspiration (ET). To sustain the increase of ET, irrigation withdraws water from rivers and groundwater reservoirs. As a result, irrigation activities have a direct impact on water and energy balance, and drive the evolution of ET under the ongoing climate change in intensively irrigated regions. On the other hand, irrigation induces feedbacks from the atmosphere, that includes changes in precipitation patterns, air temperature cooling and changes in energy-related variables. Moreover, future climate change will complexify these interactions, and it is not clear what would be the future implications of irrigation activities in water resources management and key hydroclimate variables.

To assess the joint evolution of irrigation, water resources and hydroclimate variables, we use an irrigation scheme that was recently evaluated in ORCHIDEE, the land surface component of the IPSL climate model. This scheme calculates water demand based on a soil moisture deficit approach, and restrains water supply to water available in small and large rivers and in groundwater, considering the facility to access the water source and an environmental volume for ecosystems. To assess the effect of irrigation on water resources and climate, we use two transient coupled simulations at global scale, for the period 1950-2100, under SSP5-RCP8.5 scenario to have a strong climate change signal during the future period. One of the simulations runs with the irrigation scheme activated, while the second one runs without irrigation.

Preliminary results at global scale show that irrigation will increase under the chosen scenario, due to the prescribed increase of the irrigated surface from scenario SSP5-RCP8.5 and a warmer climate. This increase will counteract part of the increasing trend of groundwater storage and will complexify the evolution of river storage in irrigated areas. On the other hand, it will enhance the increase of ET at global scale. We will extend our analysis to water and energy-related variables, including key climate variables like precipitation and air temperature, at different seasons and regions. We will also focus our analysis in some intensively irrigated areas, to assess the causes of possible water supply shortages in irrigation activities. These results should help to understand future implications of irrigation in water resources management in irrigated areas, and also effects in non-irrigated zones via remote land-atmosphere feedbacks.

How to cite: Arboleda, P., Ducharne, A., Tiengou, P., and Cheruy, F.: Effect of irrigation on joint evolution of water resources and hydroclimate variables under climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16155, https://doi.org/10.5194/egusphere-egu24-16155, 2024.