EGU24-16337, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-16337
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

An experimental set-up for the spatio-temporal quantification of fine particle infiltration in porous beds

Cyril Gadal, Matthieu Mercier, and Laurent Lacaze
Cyril Gadal et al.
  • Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, Toulouse, France (cyril.gadal@imft.fr)
Suspended load is a major part of the solid fluxes transported by rivers, mostly made of fine particles. They eventually settle and, when reaching the bottom, may infiltrate the porous medium forming the riverbed, often made of larger sediments. This can clog the riverbed up to various points, hence disturbing the various processes occurring at this interface, the hyporheic zone, such as the exchange of water, nutrients, and other chemical species. Studying this infiltration process in the field is challenging because performing the measurements is difficult, but also because many processes are likely to affect this clogging mechanism, such as bioclogging or unsteady and complex flow conditions. Hence, many studies have used idealized analogue experimental setups to characterize this mechanism. Unfortunately, accessing the temporal dynamics is particularly challenging as the porous beds, usually made of glass beads, sand or gravel, are optically opaque and prevent as such from following the infiltration of fine particles [1].
 
Here, we present a flume experiment allowing for the spatio-temporal monitoring of the fine particle infiltration within the underlying porous medium. The key point consists in using hydrogel beads, which have a refractive index close to that of water, to build the riverbed. By using a camera, we can follow the intrusion of fine particles within the porous bed by light attenuation. In addition, we also use ultrasound backscattering measurements to characterize the overlying flow and suspension. In this set-up, we can vary the properties of the suspension (size, density), the flow (height, velocity profile) and the porous bed (porosity, heterogeneity) systematically and in a controlled way. Hence, in the future, this set-up will be able to map systematically the parameter space and relate clogging situations and their spatio-temporal dynamics to the corresponding external parameters.
 
                                       

                                       Figure 1: Snapshot of an experiment. The dotted orange line indicates the separation between the suspension
                                                                                      flow (above, from right to left), and the porous bed (below).

References     
[1] Romain Dubuis and Giovanni De Cesare. The clogging of riverbeds: A review of the physical processes. Earth-Science Reviews, 239:104374, apr 2023.

How to cite: Gadal, C., Mercier, M., and Lacaze, L.: An experimental set-up for the spatio-temporal quantification of fine particle infiltration in porous beds, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16337, https://doi.org/10.5194/egusphere-egu24-16337, 2024.

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 19 Apr 2024, no comments