EGU24-16355, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-16355
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

The effectiveness of oyster reefs as a nature-based erosion control measure under storm events

Wietse van de Lageweg, Thijs van Steen, Brenda Walles, and Jaco de Smit
Wietse van de Lageweg et al.
  • HZ University of Applied Sciences, Building with Nature, Middelburg, Netherlands (wietse.vandelageweg@gmail.com)

Coastal ecosystems such as oyster reefs, salt marshes and mangroves are widely recognised as nature-based solutions reducing coastal erosion. Oyster reefs maintain their own habitat and have the ability to grow at the rate of sea level rise, making them self-sustainable, flexible and cost-effective coastal erosion measures in the face of climate change. By attenuating waves and stabilising sediment as well as facilitating and protecting neighbouring ecosystems, they stimulate coastal resilience. However, effective employment of oyster reefs as a nature-based erosion control measure is not trivial and requires the integration of ecological and engineering parameters. Given the satisfaction of these eco-engineering parameters, recent work demonstrates that oyster reefs lead to a four-fold reduction in erosion in the protected area compared to a non-protected area across a decadal period. Despite this apparent effectiveness across a longer time period, it is still poorly understood how effective oyster reefs are in reducing erosion during individual storm events and how large their morphological footprint during these events is.

We present the findings of a series of detailed morphological field surveys of the Viane oyster reef in the Eastern Scheldt, the Netherlands, during which three storm events (Ciaran, Gerrit and Henk) were captured. These storms led locally to significant wave heights of 1.3-1.5 m, corresponding to the highest percentile of wave events recorded locally. Results show that storm Ciaran resulted in an transect-average erosion of 0.02-0.05 m for the unprotected areas, corresponding to the typical annual erosion for the intertidal flats of this area. In contrast, the reef-protected areas showed a greatly reduced erosion of maximum 0.02 m but typically 0.01 m. It is important to note that the erosion pattern as a result of this storm event is far from homogeneous: erosion is greatest immediately behind the reef (~first 50 m), then reduces up to 150 m behind the reef, followed by a zone of deposition (150-250 m behind the reef) and then transitions into another zone of erosion (250-450 m behind the reef). Complementary numerical modelling with XBeach will be used to obtain additional insights into the role of wave angle, wave period and tidal timing on the flow, sediment transport and morphological changes caused by the Viane reef structure during storm events.

How to cite: van de Lageweg, W., van Steen, T., Walles, B., and de Smit, J.: The effectiveness of oyster reefs as a nature-based erosion control measure under storm events, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16355, https://doi.org/10.5194/egusphere-egu24-16355, 2024.

Supplementary materials

Supplementary material link

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 16 Apr 2024, no comments