EGU24-16375, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-16375
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Sensing enabled submarine telecom networks for seismology

Jan Petter Morten, Susann Wienecke, Ole Henrik Waagaard, Jan Kristoffer Brenne, and Erlend Rønnekleiv
Jan Petter Morten et al.
  • Alcatel Submarine Networks Norway AS, R&D, Norway (jan_petter.morten@asn.com)

Distributed acoustic sensing (DAS) on submarine fiber optic cables will contribute to resilient societies by significantly enhancing environment and hazard monitoring. Recent studies have emphasized applications to earthquake and tsunami early warning, volcanic eruptive events observation, and characterizing climate change effects. Widespread deployment of DAS instrumentation on the existing cable networks traversing the coastal zones and oceans can vastly expand data coverage with real-time capabilities at low cost. 


The use of DAS in existing long-haul telecommunication systems has so far been limited since most DAS interrogators rely on optical wavelengths that interfere with the existing telecom traffic. Recent developments in DAS technology enable co-existence of telecom traffic with the sensing application. Lab and field investigations have demonstrated that there is no detrimental effect from the interrogation on the transmission line performance when the DAS instrument is configured to operate at sufficiently separated wavelength channels. Thus, it is possible to utilize all existing cable networks for sensing applications in unison with continued telecom transmission without sacrificing any capacity in the link and maintaining high-quality DAS measurements.


This study describes a DAS deployment on a submarine cable system with live telecom traffic. The interrogation scheme facilitates consistent high sensing sensitivity exceeding 120 km range. The data quality and interrogator performance are quantified, and the localization and characterization for a representative set of environmental and anthropic signal sources is shown. We will describe real-time processing and detection implementations that transform such sensing enabled submarine telecom networks into measurement arrays suitable for seismic monitoring. Moreover, the technical solutions for DAS installation with existing terminal equipment and the practical aspects of data sharing will be described.

How to cite: Morten, J. P., Wienecke, S., Waagaard, O. H., Brenne, J. K., and Rønnekleiv, E.: Sensing enabled submarine telecom networks for seismology, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16375, https://doi.org/10.5194/egusphere-egu24-16375, 2024.