EGU24-16517, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-16517
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Heating and cooling with aquifer thermal energy storage (ATES) in cities

Philipp Blum, Haegyeong Lee, Kathrin Menberg, and Ruben Stemmle
Philipp Blum et al.
  • Institute of Applied Geosciences (AGW), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (philipp.blum@kit.edu)

Aquifer thermal energy storage (ATES) is a promising technology for sustainable and climate-friendly space heating and cooling which can contribute to lower greenhouse gas (GHG) emissions. Using 3D heat transport models, this study quantifies the technical potential of shallow low-temperature ATES in the city of Freiburg, Germany. The numerical models consider various ATES configurations and different hydrogeological subsurface characteristics relevant for the study area. Based on the modeling results, spatially resolved ATES power densities for heating and cooling are determined and compared to the space heating and cooling energy demands. High ambient groundwater flow velocities of up to 13 m d-1 cause relatively high storage energy losses resulting in maximum ATES power densities of 3.2 W m-2. Until now, these still reveal substantial heating and cooling energy supply rates achievable by ATES systems. While heating supply rates of larger than 60 % are determined for about 50 % of all residential buildings in the study area, the cooling energy demand could be supplied entirely by ATES systems for 92 % of the buildings. In addition, ATES heating alone could result in greenhouse gas emission savings of up to about 70,000 tCO2eq a‑1. The proposed modeling approach in this study can also be applied in other urban areas with similar hydrogeological conditions to obtain estimations of local ATES supply rates and support city-scale energy planning for heating and cooling.

How to cite: Blum, P., Lee, H., Menberg, K., and Stemmle, R.: Heating and cooling with aquifer thermal energy storage (ATES) in cities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16517, https://doi.org/10.5194/egusphere-egu24-16517, 2024.