EGU24-16569, updated on 09 Mar 2024
https://doi.org/10.5194/egusphere-egu24-16569
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Reconstructing the Sea-Surface Temperature at the Equatorial Pacific using tree-ring proxies from the Peruvian central Andes. 

Clara Rodriguez Morata1, Edilson Jimmy Requena Rojas4, Ginette Ticse Otalora4, Mariano Morales5, Doris Crispín DeLaCruz4, and Laia Andreu hayles1,2,3
Clara Rodriguez Morata et al.
  • 1Centre for Research on Ecology and Forestry Applications, Barcelona, Spain
  • 2Lamont-Doherty Earth Observatory of Columbia University, USA
  • 3Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
  • 4Laboratorio de Dendrocronología, Universidad Continental, Huancayo, Peru
  • 5Instituto Argentino de Nivología, Glaciología y Cs. Ambientales, Mendoza, Argentina

Some El Niño events are characterized by very warm conditions in the far-eastern Equatorial Pacific (FEP), but cool conditions elsewhere in the central Equatorial Pacific (CEP). The impact of these so called Coastal El Niño (CEN) events is particularly strong, associated with extreme rainfall events over the coastal northern Peru, Ecuador and adjacent Andean slopes. Despite the fact CEN events represent a high cost for social and economic development of these countries, little is known in terms of frequency, mechanisms and predictability and only very recently science and society are paying attention to these episodes. Here we use the tree-ring width (TRW), as well as stable oxygen (δ18O) and carbon (δ13C) isotopes measured in tree rings to reconstruct Sea-Surface Temperature (SST) in the Equatorial Pacific Ocean described by the two first Empirical Orthogonal Function (EOF). While EOF1 corresponds to the CEP region, EOF2 represents the FEP region.

The newly developed TRW and isotopic records span from 1890 to 2007 and were built from Polylepis rodolfovasquezii trees located at 4,360 m a.s.l in an Andean forest in Peru (11.72°S, 75.14°W). Our results show significant (-) correlation between tree-ring δ13C and temperature during the previous growing season peak, while non climatic signal was found in TRW and δ18O records. During the current growing season tree-ring δ18O is the proxy that exhibits the highest sensitivity to both, precipitation (-) and temperature (+) compared with the two other tree-ring parameters. In addition, the δ18O record displays more consistent correlation patterns with both EOFs, suggesting that δ18O may contain stronger climate signals than TRW and tree-ring δ13C. Lastly, the use of a sequential leave-20-out calibration-validation technique for reconstructing the variability of EOFs indicated that the δ18O record was effective to reconstruct EOF1. However, incorporating a multi-proxy strategy, which includes TRW, δ18O, and δ13C, enhanced the overall quality of the reconstruction. In contrast, the multi-proxy approach was not enough to reconstruct EOF2. We conclude that expanding the geographical distribution of proxy records into new in-land areas around the FEP, where SST variability has a local impact on hydroclimate, it is a priority in order to reconstruct CEN. Tree-ring stable isotopic records are valuable to complement existing TRW chronology to overcome the inherent difficulties on using tropical Andean species for paleoclimate research.

How to cite: Rodriguez Morata, C., Requena Rojas, E. J., Ticse Otalora, G., Morales, M., Crispín DeLaCruz, D., and Andreu hayles, L.: Reconstructing the Sea-Surface Temperature at the Equatorial Pacific using tree-ring proxies from the Peruvian central Andes. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16569, https://doi.org/10.5194/egusphere-egu24-16569, 2024.