A 172-year Drought Atlas for Romania
- 1Ștefan cel Mare University of Suceava, Faculty of Forestry, Forestry and Environmental Protection, Suceava, Romania (mihai.cotos@usm.ro)
- 2Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- 3Bucharest University, Faculty of Physics, Bucharest, Romania
In this study, we have created a 172-year historic drought catalogue for Romania by applying both the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) to 16 long-term meteorological records/stations, covering the period 1852 – 2023. The long-term meteorological records together with documentary sources (e.g., newspapers, meteorological archives) spanning the last 172 years, are used to analyze the spatio-temporal patterns of variability, trends, and potential drivers of drought conditions, thus contributing to a nuanced understanding of Romania's hydroclimatic conditions over time. The results based on the SPEI point to the fact that the southern and eastern parts of Romania are becoming drier due to an increase in the potential evapotranspiration and mean air temperature, especially after the 1990’s. By contrast, the SPI drought index does not reveal these changes in the drought variability, mainly due to the fact that the precipitation does not exhibit a significant change. Five major drought-rich periods, in terms of duration and severity, were identified at the country level from 1852–2023, based on SPEI: 1866 – 1867, 1918 – 1920, 1947 – 1948, 2000 – 2001, and 2019 – 2022, respectively. The most pronounced drought event occurred during 2019 – 2022, followed by the 1866 – 1867 event. When analyzing the SPI-based events, similar results are found over the period 1852 – 1980, but the drought event from 2019 – 2022 is not captured by the SPI index. The most pronounced drought event, based on SPI, is the 1866 – 1867 event, followed by the 1919 – 1920 event. Nevertheless, due to the influence of the Carpathian Mountains, there are also strong regional differences in the drought events and their magnitude, with the southern and eastern parts of Romania being more affected by long-lasting drought events compared to the north-western part. Highlighting the above, a Drought Atlas for Romania (1852 – 2023) was developed using long-term meteorological data, which can provide comprehensive information on drought occurrence, magnitude and impacts over a period that goes beyond the currently available products.
How to cite: Cotos, M.-G., Ionita, M., Roibu, C.-C., Antonescu, A.-B., Vaideanu, P.-C., and Nagavciuc, V.: A 172-year Drought Atlas for Romania , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16614, https://doi.org/10.5194/egusphere-egu24-16614, 2024.