EGU24-16703, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-16703
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Reconciling late Cenozoic spatio-temporal patterns of Alpine topographic changes from low-temperature thermochronology and glacial morphometric signatures 

Isabel Wapenhans1, Peter van der Beek1, Maxime Bernard1,2, Cody Colleps1, and Julien Amalberti1
Isabel Wapenhans et al.
  • 1Institute of Geosciences, University of Potsdam, Potsdam, Germany
  • 2Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland

Improving our understanding of the timing, rates and distribution of erosion across mountains and valleys plays a key part in resolving longstanding debates on how landscape dynamics are influenced by the interactions between climate, tectonics and erosion. In particular, the onset of glaciations and more variable climate in the Pliocene-Quaternary have been invoked to explain the observed global increase in erosion rates, arguing that glaciers are more efficient at eroding bedrock than rivers. But questions about the temporal and spatial impact of glacial erosion and potential feedback remain. To contribute to resolving this debate, we conducted a local-scale thermochronological study in the Tauern Window, Eastern European Alps, with the aim to compare our findings to patterns in the wider region and the Western Alps. The Tauern Window presents an ideal natural laboratory to isolate these interdependent effects due to its well constrained tectonic history of rapid uplift until ∼8 Ma. Comparatively, the western Alps have experienced similar glaciation but a different tectonic history, and show significantly higher geodetic uplift rates and millennial-timescale erosion rates. Thus, an East-West comparison could help shed light on the dominant controls on the laterally variable Alpine morphology.

Here, we present new apatite (U-Th)/He (AHe) data distributed along elevation profiles through several glacial valleys: the Italian Ahrntal and the Austrian Floitental, Krimmler Achental and Windbachtal. The low closure temperature of the AHe system is sufficiently sensitive to enable correlating recorded exhumation/denudation to surface processes and landscape-shaping dynamics, and allows us to examine the late-Cenozoic thermal history of the area. AHe dates range from ~3.4 to 12.5 Ma; the youngest dates are thus time congruent with the onset of glaciation.

Our data indicate variations in erosion rates with elevation down these valleys, which we suggest can be attributed to altitude-dependent glacial erosion intensity. These patterns are compared to a hypsometric analysis of the Eastern Alps, to determine possible links between observed denudation over the last few million years and present-day markers of glacially reshaped topography. This study also provides initial insight into the best suited locations for a future higher-resolution investigation using 4He/3He thermochronometry, which promises to be able to resolve the area’s denudation history into the Quaternary and allow for a more direct comparison to modern hypsometry. These findings will also inform a future focused investigation into landscape-shaping couplings discernible from thermochronological data used alongside landscape analysis via thermal-kinematic modelling in PecubeGUI.

How to cite: Wapenhans, I., van der Beek, P., Bernard, M., Colleps, C., and Amalberti, J.: Reconciling late Cenozoic spatio-temporal patterns of Alpine topographic changes from low-temperature thermochronology and glacial morphometric signatures , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16703, https://doi.org/10.5194/egusphere-egu24-16703, 2024.