EGU24-1674, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-1674
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Using FracpaQ and seismic attributes to assess seismic scale fractures in carbonate reservoirs

Hager Elattar1,2, Richard Collier1, and Paul W.J. Glover1
Hager Elattar et al.
  • 1School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
  • 2Department of Geology, Faculty of Science, Suez Canal University, Egypt

Abstract: Fractured carbonate reservoirs are of great importance in the oil industry due to their significant role in global oil reserves and complex nature, where the majority of these reservoirs are naturally fractured, making them complex and challenging for oil recovery. The detection and characterization of fractures are essential for understanding the reservoir's petrophysical properties and hydrocarbon recovery potential as they play a critical role in reservoir performance. In this paper we have used 3D seismic from the Razzak field in the Western Desert, Egypt, with a specific focus on the Alamein dolomite reservoir. The reservoir holds significance due to its prolific oil-bearing nature, and featuring widespread lateral distribution in the northern Western Desert. Additionally, its contribution to an active Mesozoic petroleum system emphasizes its importance. Using Petrel software, the Alamein top and visible faults were identified, leading to the creation of a structural map illustrating the WSW-ENE axes of the Alamein's structural culminations in the southern part of the horst block. Owing to an extensional force during the Jurassic period with a NE-SW orientation, resulting from rifting, was evident, marked by the formation of normal faults associated with the opening of the Neotethys in the NE-SW direction. In the interpretation of 3D seismic data for Alamein dolomite reservoir, only one major listric normal fault was identified. However, the presence of minor faults or fractures, not easily discernible with conventional seismic techniques, is plausible. To address this, volume attributes were applied to detect subtle changes in seismic properties: (i) the curvature operation calculated the dip and azimuth angles, aiding in identifying structural complexities like faults and fractures, (ii) the maximum curvature value highlighted areas of steeply dipping or folded structures, (iii) Edge detection emphasized sharp boundaries, yet no hidden fractures or minor faults were revealed. The variance attribute yielded limited information, but Ant tracking on the variance cube effectively identified hidden minor faults and fractures. Incorporating the Ant track attribute into FRACPAQ software provided an objective methodology for quantifying fracture patterns, revealing NW-SE-oriented fracture segments in contrast to the WSW-ENE orientation of the major fault. Consequently, seismic attributes will unveil concealed fractures, and the application of FRACPAQ will prove effective in furnishing data on fracture orientation and length statistics.

Key words: FracpaQ; seismic attributes; fractured carbonate; Razzak field

How to cite: Elattar, H.A., Collier, R., and Glover, P. W. J.: Using FracPaQ and seismic attributes to assess seismic scale fractures in carbonate reservoirs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1674, https://doi.org/10.5194/egusphere-egu24-1674, 2024.

How to cite: Elattar, H., Collier, R., and Glover, P. W. J.: Using FracpaQ and seismic attributes to assess seismic scale fractures in carbonate reservoirs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1674, https://doi.org/10.5194/egusphere-egu24-1674, 2024.