EGU24-16797, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-16797
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

 Soil microbial based strategies and seed enhancement technologies reconnect plant-soil biodiversity and improve restoration outcomes 

Miriam Muñoz-Rojas, Frederick Dadzie, and Nathali Machado de Lima
Miriam Muñoz-Rojas et al.
  • Universidad de Sevilla, Sevilla, Spain (mmunnoz1@us.es)

Soil microorganisms control important ecosystem functions such as nutrient cycling, plant productivity and climate regulation. Thus, microbially assisted conservation and restoration has the potential to reconnect above and belowground dynamics, creating functional ecosystems that are more resilient to climate change impacts. In this research, we (i) assessed the responses of soil microbial communities to disturbance, e.g., severe fire, and extractive activities such as mining, and (ii) developed bioinoculants composed of locally sourced soil bacteria from the rhizosphere and biocrust cyanobacteria, to promote plant growth and soil fertility and enhance ecosystem capacity for global change adaptation. This presentation will showcase some key findings of these studies conducted in contrasting Australian ecosystems (shrubland-grassland in the arid zone, and subtropical/temperate forests). These outcomes include the successful translocation of whole-soil communities for inhibiting weeds, and the effective use of indigenous microbes (rhizobacteria and cyanobacteria combinations) for soil carbon sequestration, nitrogen fixation, and growth promotion of key arid and temperate plant species.

Overall, our research demonstrates the benefits of using native microbial communities as bioinoculants in ecosystem restoration. The emerging technologies used in our research, i.e. seed enhancement through seed biopriming and biopellets, have a large potential for landscape-scale conservation and restoration programs in the context of global change.

How to cite: Muñoz-Rojas, M., Dadzie, F., and Machado de Lima, N.:  Soil microbial based strategies and seed enhancement technologies reconnect plant-soil biodiversity and improve restoration outcomes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16797, https://doi.org/10.5194/egusphere-egu24-16797, 2024.