EGU24-16849, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-16849
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Subgrain-size piezometry of feldspar and quartz records a single paleostress from dry lower continental crust

Alix Osinchuk1, Brendan Dyck1, Dave Wallis2, and Alfredo Camacho3
Alix Osinchuk et al.
  • 1University of British Columbia Okanagan, Kelowna, Canada (alix.osinchuk@ubc.ca)
  • 2University of Cambridge, Cambridge, United Kingdom
  • 3University of Manitoba, Winnipeg, Canada

Strength-depth profiles for ductile portions of continental crust are derived from either extrapolation of flow laws from deformation experiments or paleopiezometric estimates in deformed and nominally hydrated plate margins. Lower continental crust in intracontinental settings, in contrast, is relatively dry and should be considerably stronger than the lower crust of hydrated plate margins. The relative strengths of dry quartz and feldspar are poorly constrained by experiments and paleopiezometric estimates from such rocks are sparse. As such, the strength of intracratonic lower crust is difficult to ascertain. Here, we use a recently calibrated subgrain-size piezometer to estimate paleostresses from feldspar and quartz deformed in relatively dry (<20 ppm H2O) lower continental crust of the Musgrave Ranges in central Australia. Neocrysts of plagioclase, K-feldspar, and quartz mantle partially recrystallized porphyroclasts, which is indicative of bulging and subgrain-rotation recrystallization. Using crystallographic preferred orientations and plotting misorientation axes of subgrain boundaries of each phase, we infer that dislocation creep involved the slip systems (010)[100] and (010)[001] for plagioclase, (010)[101] for K-feldspar, and (0001)<11-20> and {01-10}<0001> for quartz. Titanium in quartz and gradients in concentration of Ca and K in feldspars within neocrysts and along subgrain boundaries verify that subgrains in all three phases were formed at a temperature of ~650°C under dry, eclogite-facies conditions. Subgrain sizes of 10.6–18.1 µm in quartz, 11.5–16.9 µm in plagioclase, and 12.0–17.5 µm in K-feldspar correspond to differential paleostresses between 22–36 MPa and are consistent with a single mean paleostress of 28 MPa. Our results demonstrate that there is minimal stress partitioning between dry quartz, plagioclase and K-feldspar under typical crustal thermal gradients. Moreover, the differential stress accommodated by felsic rocks in the Davenport shear zone is lower than predicted by previous strength-depth profiles of lower cratonic crust.

How to cite: Osinchuk, A., Dyck, B., Wallis, D., and Camacho, A.: Subgrain-size piezometry of feldspar and quartz records a single paleostress from dry lower continental crust, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16849, https://doi.org/10.5194/egusphere-egu24-16849, 2024.