EGU24-16957, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-16957
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Influence of changing sea ice parameterisation on Southern Ocean  carbon uptake and export production

Tomas Torsvik
Tomas Torsvik
  • University of Bergen, Geophysical Institute, Bergen, Norway (tomas.torsvik.work@gmail.com)

The Southern Ocean (SO) plays a key role in global carbon and nutrient cycles, as the SO overturning circulation feeds into both deep-water formation (lower branch) and Subantarctic intermediate and mode water formation (upper branch). While the air-sea CO2 balance is influenced mainly by deep-water formation, global export production is more sensitive to intermediate and mode water formation, giving rise to the concept of a SO biogeochemical divide [1]. Sea ice formation, transport and melting plays a prominent role in the transformation of buoyancy for both the upper and lower branches of the overturning circulation [2]. Hence, changes in sea ice parameterisation have potential for substantially altering carbon uptake and export production in global Earth System Models (ESMs).

Global ESMs seek to simulate physical, chemical and biological processes that are relevant for the evolution of global climate, including fluxes of greenhouse gasses and aerosols between the atmosphere and ocean. The air-sea gas exchange is determined by the difference in concentration across the air-sea interface, and a gas transfer velocity that is specific for the gas in question. However, the air-sea gas exchange is inhibited by the presence of sea ice. A modified formula proposed by Steiner et al. [3], accounting for cracks and leads in the sea ice, has recently been  implemented in the Norwegian Earth System Model NorESM2 [4]. In this study we investigate how the change in this sea ice parameterisation influences the carbon uptake and export production associated with the Southern Ocean overturning circulation.

REFERENCES

[1] I. Marinov, A. Gnanadesikan, J. R. Toggweiler and J. L. Sarmiento, "The Southern Ocean biogeochemical divide", Nature, Vol. 441, 964-967, 2006. DOI: 10.1038/nature04883

[2] R. P. Abernathey, I. Cerovecki, P. R. Holland, E. Newsom, M. Mazlo and L. D. Talley, "Water-mass transformation by sea ice in the upper branches of
the Southern Ocean overturning", Nature Geoscience, Vol. 9, 596-601, 2016. DOI: 10.1038/ngeo2749

[3] N. S. Steiner, W. G. Lee and J. R. Christian, "Enhanced gas uxes in small sea ice leads and cracks: Efects on CO2 exchange and ocean acidiccation", JGR Oceans, Vol. 118(3), 1195-1205, 2013. DOI: 10.1002/jgrc.20100

[4] Ø. Seland, M. Bentsen, D. Olivié, T. Toniazzo, A. Gjermundsen, L. S. Graff, J. B. Debernard, A. K. Gupta, Y.-C. He, A. Kirkevåg, J. Schwinger, J. Tjiputra, K. S. Aas, I. Bethke, Y. Fan, J. Griesfeller, A. Grini, C. Guo, M. Ilicak, I. H. H. Karset, O. Landgren, J. Liakka, K. O. Moseid, A. Nummelin, C. Spensberger, H. Tang, Z. Zhang, C. Heinze, T. Iversen and M. Schulz, "Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations", Geoscientifc Model Development, Vol. 13(12), 6165-6200, 2020. DOI: 10.5194/gmd-13-6165-2020

How to cite: Torsvik, T.: Influence of changing sea ice parameterisation on Southern Ocean  carbon uptake and export production, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16957, https://doi.org/10.5194/egusphere-egu24-16957, 2024.