EGU24-16995, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-16995
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Paleostress reconstruction from fault slip data along the Purulia Shear Zone, Chotanagpur Gneissic Complex, India  

Subha Kundu, Uddipta Mohanta, and Sudheer Kumar Tiwari
Subha Kundu et al.
  • Department of Earth Sciences, Indian Institute of Technology Roorkee, Uttarakhand 247667, India (subha_k@es.iitr.ac.in)

Paleostress analysis is commonly used to understand the brittle exhumation process of deeper crustal rocks to the surface. In this research, we have assessed different stress fields and associated tectonic events in the southern part of Chotanagpur Gneissic Complex (CGC) using fault slip data. The southern CGC comprises two significant crustal-scale shear zones: South Purulia Shear Zone (SPSZ) and the North Purulia Shear Zone (NPSZ), along and across which our fault slip data has been collected. These shear zones exhibit high-grade (amphibolite to granulite) facies Proterozoic rocks consisting mainly of felsic gneisses and migmatites in which low-grade metapelite of North Singhbhum Mobile Belt (NSMB), calc-silicate and mafic granulites of CGC occur as enclaves.

 There has not been any previous study to determine the major stress orientations during brittle exhumation acting upon the Proterozoic rocks in the study area. Thus, our main aim in this study is to understand the variation in stress regime along and across these shear zones and also try to reconstruct the paleostress orientation to determine the history of brittle exhumation of the lower crustal rocks during major orogenic stages of the Proterozoic period. Almost 1000 homogeneous fault slip data have been analyzed using Win-Tensor software. The primary fault data within both shear zones exhibits an approximate E-W orientation, whereas other sets range from NW-SE to NE-SW. Reconstructing stress fields using the age, overprinting relationship and sense of fault movements show that during the Neoproterozoic period (1.0-0.95 Ga), the direction of the compressional stress regime was in N-S orientation. This indicates an oblique-slip movement (thrusting and sinistral strike-slip fault) of the northern CGC block with respect to the NSMB resulting in crustal thickening. The evidence of E-W striking, orogen-parallel normal faults was produced from an N-S directed extensional stress and is primarily responsible for brittle exhumation of these widely distributed granulite facies rocks especially the CGC gneisses in the Purulia region through crustal extension and thinning at 0.95–0.85 Ga.

How to cite: Kundu, S., Mohanta, U., and Tiwari, S. K.: Paleostress reconstruction from fault slip data along the Purulia Shear Zone, Chotanagpur Gneissic Complex, India  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16995, https://doi.org/10.5194/egusphere-egu24-16995, 2024.