Exploring Solar Energetic Particles Transport in the Inner Heliosphere
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 5 place Jules Janssen, 92195 Meudon, France (ahmed.houeibib@obspm.fr)
We simulate the propagation of relativistic test particles within the field of a 3D MHD simulation of the solar wind. The adiabatic ideal MHD equations are integrated numerically using the MPI-AMRVAC code. Test particles are initialized within the MHD simulation grid and advanced in time according to the guiding center equations, we employ a third-order accurate time prediction-correction method from Mignone et al. 2023 for integration. We also include possibility of diffusion in velocity space based on a particle-turbulence mean free path λ∥ along the magnetic field line. One of the first results where we consider 81 keV electrons injected at 0.139 AU heliocentric distance and mean free path λ∥ = 0.5 AU is in good qualitative agreement with measurements at 1 AU.
How to cite: Houeibib, A., Pantellini, F., and Griton, L.: Exploring Solar Energetic Particles Transport in the Inner Heliosphere, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17085, https://doi.org/10.5194/egusphere-egu24-17085, 2024.