Investigating the Effects of Extreme Weather and their Interactions with Farm Management on Crop Yields in the Netherlands
- 1Wageningen Economic Research, Wageningen University & Research, Wageningen, Netherlands
- 2Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- 3School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
Recent studies that address the impacts of extreme weather on crop yields, are predominantly focused on expansive geographical scales and generally ignore the role of management practices in modulating the dynamics of weather-crop sensitivities. In our study, a unique dataset containing data from the Dutch Minerals Policy Monitoring Program and the Farm Accountancy Data Network (FADN) is used to explore the relationship between extreme weather and crop yields at farm level in the Netherlands. The dataset consists of unbalanced panel data from the years 2006 to 2021 including an average of about 1,500 farms. The Standardized Precipitation Evapotranspiration Index (SPEI) is used to reflect weather anomalies, both extreme wet and dry conditions. The climatological variables necessary to compute the SPEI are estimated at field-level using data gathered by the Royal Netherlands Meteorological Institute from 277 precipitation stations and 18 climate stations. In total, ten types of crops are covered and the role of soil type, irrigation and nutrient application in modulating the relationship between extreme weather and crops is elucidated. Distinction is made between drought and excessive precipitation during the planting-, growing- and harvesting period. The results show substantial impacts from drought during the growing- and harvesting period and excessive precipitation during the planting- and growing period. Severe droughts show statistically significant (p≤0.05) reductions in yield for nine crops, and lead to yield reductions ranging from 10 to 25 percent when only occurring during the growing period. Meanwhile, eight crops show statistically significant (p≤0.05) reductions in yield due to severe precipitation excess, with reductions ranging from 5 to 20 percent from excessive precipitation during the planting period. Soils such as sand or loess amplify the negative impact of drought on crop yield, while softening the impact of excessive precipitation. Furthermore, irrigation and nutrient application (both nitrogen and phosphate) are shown to moderately decrease the impact of extreme weather on crop yield, with substantial differences depending on crop type and the period in which the extreme weather event occurred. The findings of this study provide valuable insights to guide local adaptation priorities which are critical given the projected increase in the intensity and frequency of extreme weather under climate change.
How to cite: van der Veer, S., Hamed, R., Karabiyik, H., and Roskam, J.: Investigating the Effects of Extreme Weather and their Interactions with Farm Management on Crop Yields in the Netherlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17120, https://doi.org/10.5194/egusphere-egu24-17120, 2024.