EGU24-17149, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-17149
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

µID-TIMS: A Focused Ion Beam (FIB)–Femtosecond (Fs) Laser Microsampling Protocol for Spatially Resolved High-Precision Zircon Geochronology 

Sava Markovic, Jörn-Frederik Wotzlaw, Dawid Szymanowski, and Cyril Chelle-Michou
Sava Markovic et al.
  • ETH Zürich, Institute for Geochemistry and Petrology, Department of Earth Sciences, Zürich, Switzerland (sava.markovic@erdw.ethz.ch)

High-precision (CA-ID-TIMS) U-Pb geochronology of individual growth zones of zircon has been a long-awaited milestone in the geochronological community. Focused ion beam (FIB) and femtosecond (fs) laser machining monitored in real time by CL-SEM both show promise as techniques for physical extraction of target zircon domains in preparation for spatially resolved ID-TIMS dating. In this contribution, we test a novel laboratory protocol for zircon microsampling using an in-house multi-ion plasma (Ar-Xe) FIB and fs laser, and showcase first µID-TIMS zircon dates. We first examine the chemical impacts of protective metal coatings (Cr, Pt-Pd and C) used for ion milling on the U-Pb systematics of a low-Pb and a low-U zircon. We then present high-resolution transmission electron microscope (TEM) images of a zircon surface irradiated by ion and fs laser beams to show the contrasting extent of structural damage induced by the two techniques at standard microsampling conditions. Potential Pb-loss/U-gain in the nanometer-wide ion damaged layer in zircon is mapped by atom probe tomography (APT). Subsequently, we showcase the FIB workflow for extracting a number of microsamples of the Mud Tank and GZ-7 reference zircon spanning the sizes expected in future applications using natural zircon. We present first results of spatially resolved high resolution (µID-TIMS) dating of the Mud Tank and GZ-7 microsamples, and explore the achieved analytical accuracy and precision. Finally, we discuss the feasibility of conducting a µID-TIMS study on natural zircon given zircon features (i.e., age, U content, and volume of target domain) and research objective, and discuss benefits and limits to our approach.

How to cite: Markovic, S., Wotzlaw, J.-F., Szymanowski, D., and Chelle-Michou, C.: µID-TIMS: A Focused Ion Beam (FIB)–Femtosecond (Fs) Laser Microsampling Protocol for Spatially Resolved High-Precision Zircon Geochronology , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17149, https://doi.org/10.5194/egusphere-egu24-17149, 2024.