EGU24-1721, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-1721
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

AIRETH 2.0 – a revamped helicopter-borne GPR for glaciological applications

Daniel Farinotti1,2, Raphael Moser1,2, Barthelemy Anhorn1,2, Christophe Ogier1,2, Andreas Bauder1,2, Benedikt Pohl3, Benedikt Soja3, and Hansruedi Maurer4
Daniel Farinotti et al.
  • 1Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
  • 2Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
  • 3Institute of Geodesy and Photogrammetry, ETH Zurich, Zurich, Switzerland
  • 4Institute of Geophysics, ETH Zurich, Zurich, Switzerland

The Airborne Ice Radar of ETH Zurich (AIRETH) is a dual-polarization, helicopter-borne GPR system that was developed for glaciological applications. At the core of AIRETH are two pairs of commercial, orthogonally oriented, bistatic dipole antennas operating at a center frequency of 25 HMz or higher. The system has extensively been operated in the past, e.g. for collecting close to 2,500 km of GPR data for estimating the ice thickness of glaciers across the Swiss Alps.

Here, we present a series of amendments that have recently performed to the AIRETH system in order to increase its versatility and operability. The corresponding work notably included:
1. a re-design of AIRETH’s air-frame, aiming at decreasing the system’s overall weight, as well as at increasing the system’s stability and ease of operation;
2. a newly developed positioning system, which is now based on the integration of information obtained from a set of four low-cost Global Navigation Satellite System (GNSS) sensors placed at the corners of the main air-frame in combination with an Inertial measurement unit (IMU); and
3. an experimental antenna shielding based on low-cost materials, aiming at minimizing the ringing noise caused by the proximity of the GPR system to the carrying helicopter.

The contribution will focus on the advances that were achieved compared to the previous AIRETH setup, and will point out the challenges faced during system re-design. The capabilities of the new system will, moreover, be illustrated by presenting some recent datasets acquired over Alpine glaciers.

How to cite: Farinotti, D., Moser, R., Anhorn, B., Ogier, C., Bauder, A., Pohl, B., Soja, B., and Maurer, H.: AIRETH 2.0 – a revamped helicopter-borne GPR for glaciological applications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1721, https://doi.org/10.5194/egusphere-egu24-1721, 2024.