EGU24-17299, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-17299
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Groundwater Level Assessment using Data logger and Manual monitoring in developing Country, southwestern Ethiopia

Adisu Befekadu Kebede1,2, Fekadu Fufa Feyessa2, Thomas Hermans1, and Kristine Walraevens1
Adisu Befekadu Kebede et al.
  • 1Laboratory for Applied Geology and Hydrogeology, Department of Geology, Ghent University, 9000 Ghent, Belgium
  • 2Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, 378, Ethiopia

Groundwater monitoring is fundamental, especially for areas where there is a high dependency on groundwater use. Groundwater level (GWL) monitoring is poorly known in Ethiopia. The study focused on evaluating groundwater levels and their relation to precipitation in Ethiopia's Gilgel Gibe and Dhidhessa catchment areas. Groundwater levels (GWL), spring discharges, and rainfall data were collected from various points over the 2022/2023 hydrological year.  Rainfall varied across the region, increasing from April to September and decreasing from plateaus to lowlands with a value between 1539 mm to 1973mm annually. Groundwater levels showed significant spatial and temporal variation, influenced by precipitation and local topography.  Maximum water level varies between 17.6 and 5.75 m in the northwest, 11.6 and 6.2 m in the central part, 11.5 and 3.2 m in the east, 13.1and 4.2 m in the south. Minimum water level varies between 13.2 and 3.8 m in the northwest, 5.8 and 2.7 m in the central, 3.5 and 1.1 m in the east and 7 and 3. 6 m in the south of the study area. Groundwater level fluctuation in the automatically monitored well was 1.55m in the deep well and 3.99m in the shallow well. The spatial drop of the water table in the northwest and south is due to a hydraulic gradient to lowlands and depressions, and evapotranspiration from dense forest coverage. In the central and eastern study area, GWL is shallow and intermediate based on the positions of monitoring wells. Some wells are fully saturated during the rainy season between August and September. Shallow wells reacted swiftly to rainfall, but their levels declined in the dry season. Some wells in high elevation areas experienced minimal fluctuations due to their perched aquifer positions. Groundwater drawdown from usage in dug wells quickly recovered, suggesting potential for small-scale agricultural use. Long-term monitoring and increased data logging are recommended for future studies.

How to cite: Kebede, A. B., Feyessa, F. F., Hermans, T., and Walraevens, K.: Groundwater Level Assessment using Data logger and Manual monitoring in developing Country, southwestern Ethiopia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17299, https://doi.org/10.5194/egusphere-egu24-17299, 2024.