In this study, We use data from the European Space Agency Sentinel-1 mission to map areas affected by active deformation processes over the Italian territory. To achieve this goal, we use data acquired by the satellite mission between 2018 and 2023, and we generate ground deformation products using a multi-temporal interferometric approach (Persistent Scatterer Interferometry - PS).
We automatically delimitate areas characterized by homogeneous deformation by employing a novel spatial clustering algorithm that analyzes the PS average annual displacement rate over the considered temporal period. For each cluster, we determine its boundaries and average deformation statistics.
Here, we present the algorithm implementation details and discuss the results obtained by applying the methodology to deformation observations acquired from ascending and descending geometries and projected 2D East-West and Vertical deformation products. We use the algorithm to process observations acquired over two validation sites, and we determine its performance over large spatial scales and in proximity to critical national infrastructures.
Our results allow us to generate a complete, nationwide dataset of active deformation areas, highlighting how adopting automatic strategies to handle large volumes of data is crucial nowadays.