EGU24-17577, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-17577
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Isotopic signatures of fluid inclusions from quartz veins record sub-surface fluid-rock interaction associated with the Variscan orogeny

Akbar Aydin Oglu Huseynov, Jeroen van der Lubbe, Suzan Verdegaal - Warmerdam, Onno Postma, Klaudia Kuiper, and Jan Wijbrans
Akbar Aydin Oglu Huseynov et al.
  • Vrije Universiteit Amsterdam, Earth Sciences, Amstelveen, Netherlands (a.huseynov@vu.nl)

The presence of fluid inclusions in quartz veins is crucial to reconstruct fluid migration pathways in the subsurface. In this study, we provide an innovative approach to analyse  the hydrogen and oxygen isotopic composition of water fluid inclusions using cavity ring-down spectroscopy (CRDS). The CRDS is connected to a mechanical crusher in order to release fluid inclusion water from the host mineral. The evaporated fluid inclusion water from the crushed sample is added to a moistened background of nitrogen gas. For this purpose, we designed a temperature-regulated evaporation unit at Earth Science Stable Isotope Laboratory at the Vrije Universiteit Amsterdam (VU) to ensure that the isotopic composition and concentration of the background water vapour remains constant. The isotopic compositions of the fluid inclusions are calculated by subtracting the isotopic and concentration of the ‘wet’ background.

This newly designed setup allows for reliable measurements of the oxygen and hydrogen isotopic compositions of fluid-inclusions in quartz minerals. The objective of this study is to analyse the isotopic compositions of fluid-inclusions in quartz veins from distinct regions in Europe (Germany and Portugal), which are both linked to the Variscan orogeny. The isotopic data align with the modern Global Meteoric Water Line, providing evidence for the presence of meteoric fluids in the examined fold-and-thrust belts of the Variscan orogeny. Complementary microthermometry data, isotopic signatures of silicon and oxygen of  the quartz host mineral further document the cooling of hydrothermal systems under the influence of meteoric water at various geological events. This interpretation concords with the 40Ar/39Ar dating fluid rich fraction of quartz vein minerals.

How to cite: Huseynov, A. A. O., van der Lubbe, J., Verdegaal - Warmerdam, S., Postma, O., Kuiper, K., and Wijbrans, J.: Isotopic signatures of fluid inclusions from quartz veins record sub-surface fluid-rock interaction associated with the Variscan orogeny, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17577, https://doi.org/10.5194/egusphere-egu24-17577, 2024.