EGU24-1760, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-1760
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

EarthPT: a foundation model for Earth Observation

Michael Smith, Luke Fleming, and James Geach
Michael Smith et al.
  • Aspia Space, United Kingdom of Great Britain – England, Scotland, Wales (mike.smith@aspiaspace.com)

 We introduce EarthPT -- an Earth Observation (EO) pretrained transformer. EarthPT is a 700 million parameter decoding transformer foundation model trained in an autoregressive self-supervised manner and developed specifically with EO use-cases in mind. We demonstrate that EarthPT is an effective forecaster that can accurately predict future pixel-level surface reflectances across the 400-2300 nm range well into the future. For example, forecasts of the evolution of the Normalised Difference Vegetation Index (NDVI) have a typical error of approximately 0.05 (over a natural range of -1 -> 1) at the pixel level over a five month test set horizon, out-performing simple phase-folded models based on historical averaging. We also demonstrate that embeddings learnt by EarthPT hold semantically meaningful information and could be exploited for downstream tasks such as highly granular, dynamic land use classification. Excitingly, we note that the abundance of EO data provides us with -- in theory -- quadrillions of training tokens. Therefore, if we assume that EarthPT follows neural scaling laws akin to those derived for Large Language Models (LLMs), there is currently no data-imposed limit to scaling EarthPT and other similar `Large Observation Models.'

EarthPT is available under the MIT licence.

How to cite: Smith, M., Fleming, L., and Geach, J.: EarthPT: a foundation model for Earth Observation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1760, https://doi.org/10.5194/egusphere-egu24-1760, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 17 Apr 2024, no comments