EGU24-17645, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-17645
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Unveiling plasma energization and energy transport in the Earth’s Magnetospheric System through multi-scale observations: the science of the Plasma Observatory mission

Alessandro Retinò1, Maria Federica Marcucci2, and the Plasma Observatory Team*
Alessandro Retinò and Maria Federica Marcucci and the Plasma Observatory Team
  • 1Laboratoire de Physique des Plasmas - CNRS, Palaiseau, France (alessandro.retino@lpp.polytechnique.fr)
  • 2INAF - IAPS, Roma, Italy (maria.marcucci@inaf.it)
  • *A full list of authors appears at the end of the abstract

Energetic plasma is everywhere in the Universe. We observe plasma energization and energy transport in a variety of cosmic plasmas, such as planetary magnetospheres, stellar coronae, supernova remnant shocks, accretion disks, and astrophysical jets. The Earth’s Magnetospheric System is a key example of a complex and highly dynamic cosmic plasma environment where massive energy transport and plasma energization occur and can be directly studied through in situ spacecraft measurements. Despite the large amount of available in situ observations, however, we still do not fully understand how plasma energization and energy transport work. This is essential for understanding how our planet works, including space weather science, and is also important for the comprehension of distant astrophysical plasma environments. In situ observations, theory and simulations suggest that the key physical processes driving energization and energy transport occur where plasma on fluid scales couple to the smaller ion kinetic scales, at which the largest amount of electromagnetic energy is converted into energized particles. Remote observations currently cannot access these scales, and existing multi-point in situ observations do not have a sufficient number of observation points. Plasma Observatory will be the first mission having the capability to resolve scale coupling in the Earth’s Magnetospheric System through measurements of fields and particles at seven points in space, covering simultaneously ion and fluid scales in the Key Science Regions where the strongest plasma energization and energy transport occurs: the foreshock, bow shock, magnetosheath, magnetopause, magnetotail current sheet, and transition region. By resolving scale coupling in fundamental plasma processes such as shocks, magnetic reconnection, waves and turbulent fluctuations, plasma jets, field-aligned currents and plasma instabilities, these measurements will allow us to answer the two Plasma Observatory science questions (Q1) How are particles energized in space plasmas ? and (Q2) Which processes dominate energy transport and drive coupling between the different regions of the Earth’s Magnetospheric System? Plasma Observatory will also address important additional science targets such effects of ionospheric processes on the Magnetospheric System (e.g. ion outflows), outer radiation belts processes, solar wind physics and space weather science, which will increase  the scientific return of the PO mission. Going beyond the limitations of current ESA/Cluster and NASA/MMS four-point constellations, which can only resolve plasma processes at individual scales, Plasma Observatory will  transform our understanding of the plasma environment of our planet with a major impact on the understanding of astrophysical plasmas too.

Plasma Observatory Team:

T. Amano 1), V. Angelopoulos 2), S. D. Bale 3), M. Berthomier 4), R. D'Amicis 5), J. De Keyser 6), U. Derz 7), A. Dimmock 8), M. Dunlop 9), C. Forsyth 10), M. Fränz 11), H. Fu 12), A. Galli 13), V. Genot 14), K. Kauristie 15), Y. Khotyaintsev 8), L. Kistler 16), M. Kretzschmar 17), H. Kucharek 16), K. Issautier 18), B. Lavraud, 14,19), O. Le Contel 1), I. Mann 20), L. Matteini 21), K. McWilliams 22), M. Maksimovic 18), R. Nakamura 23), A. C. Norgren 24), M. Palmroth 25), E. Panov 23), O. Pezzi 26), F. Plaschke 27), H. Rothkaehl 28), E. Roussos 11), Y. Saito 29), J. Soucek 30), A. Stankov 8), M. Steller 23), M. Taylor 8), M. Yamauchi 31), R. Vainio 32), A. Vaivads 33), F. Valentini 34), R. F. Wimmer-Schweingruber 35) and the Plasma Observatory Science Team. Affiliations: 1) Univ. of Tokyo, JP, 2) UCLA, US, 3) Univ. California, Berkeley, US, 4) LPP, FR, 5) INAF-IAPS, IT, 6) BIRA, BE, 7) ESTEC, 8) IRF-U, SE, 9) RAL, UK, 10) MSSL-UCL, UK, 11) MPS, DE, 12) Beihang Univ., CN, 13) Univ. of Bern, CH, 14) IRAP, FR, 15) FMI, FI, 16) UNH, US, 17) LPC2E, FR, 18) LESIA, FR, 19) LAB, FR, 20) Univ. of Alberta, CA, 21) ICL, UK, 22) Univ. of Saskatoon, CA, 23) IWF/ÖAW, AT, 24) Univ. of Bergen, NO, 25) Univ. of Helsinki, FI, 26) ISTP, IT, 27) TU Braunschweig, DE, 28) CBK, PL, 29) ISAS-JAXA, JP, 30) IAP-CAS, CZ, 31) IRF-K, SE, 32) Univ. of Turku, FI; 33) KTH, SE, 34) Univ. of Calabria, IT, 35) Univ. of Kiel, DE

How to cite: Retinò, A. and Marcucci, M. F. and the Plasma Observatory Team: Unveiling plasma energization and energy transport in the Earth’s Magnetospheric System through multi-scale observations: the science of the Plasma Observatory mission, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17645, https://doi.org/10.5194/egusphere-egu24-17645, 2024.