EGU24-17827, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-17827
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A million-year reconstruction of global volcanism intensity: How does it link to glaciation?

Jack Longman1, Thomas M. Gernon2, Thea K. Hincks2, Sina Panitz1,3, and Martin R. Palmer2
Jack Longman et al.
  • 1Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
  • 2School of Ocean & Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
  • 3School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK

Reduced ice volume during interglacials is hypothesized to amplify volcanic activity because ice-mass removal reduces pressure on magma chambers (Huybers & Langmuir, 2009). There is some evidence for this process occurring on regional (Maclennan et al., 2002) and perhaps semi-global scales (Kutterolf et al., 2019), but there is a lack of globally representative tephra production records. Therefore, our understanding of the global relationship between glacial-interglacial cycles and volcanism uncertain. As a result, we do not know whether deglaciation directly drives enhanced volcanism, or if the feedbacks are more complex. In this work we use a database of visible tephra layers in marine sediments, and a weighted bootstrap resampling method to develop a record of global tephra (the products of explosive volcanism) production which covers the past million years.

Our results show an intensification of global tephra production around 420 to 400 thousand years ago (ka), which coincides with Marine Isotope Stage (MIS) 11 – the warmest interglacial of the past million years. MIS11 was a period of high sea level (up to 10 m above present) and low ice cover, with Greenland likely largely ice free. We suggest the low ice levels drove enhanced volcanism, and consequently enhanced volcanic carbon dioxide degassing, which in turn drove further ice sheet ablation. This positive feedback may the explain this warmth, and in turn, the Mid-Brunhes transition, which heralded the arrival of generally warmer interglacials after 400 ka. Further, after 400 ka we begin to see cyclicity in the tephra record, mirroring eccentricity forcing seen in ice volume records. More pronounced ice-volcano feedbacks may therefore explain the stronger interglacials of the past 400,000 years.

References

Huybers, P., & Langmuir, C. (2009). Feedback between deglaciation, volcanism, and atmospheric CO2. Earth and Planetary Science Letters, 286(3–4), 479–491.

Kutterolf, S., Schindlbeck, J. C., Jegen, M., Freundt, A., & Straub, S. M. (2019). Milankovitch frequencies in tephra records at volcanic arcs: The relation of kyr-scale cyclic variations in volcanism to global climate changes. Quaternary Science Reviews, 204, 1–16.

Maclennan, J., Jull, M., McKenzie, D., Slater, L., & Grönvold, K. (2002). The link between volcanism and deglaciation in Iceland. Geochemistry, Geophysics, Geosystems, 3(11), 1–25.

 

How to cite: Longman, J., Gernon, T. M., Hincks, T. K., Panitz, S., and Palmer, M. R.: A million-year reconstruction of global volcanism intensity: How does it link to glaciation?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17827, https://doi.org/10.5194/egusphere-egu24-17827, 2024.