EGU24-17832, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-17832
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

The Atlantic sibling: a reconciling vision on the nature of El Niño’s “little brother” 

Cosimo Enrico Carniel1, Gian Luca Borzelli2,3, Aniello Russo2, and Sandro Carniel
Cosimo Enrico Carniel et al.
  • 1ETH Zürich, Switzerland (ccarniel@student.ethz.ch)
  • 2STO-CMRE, Centre for Maritime Research and Experimentation, La Spezia, Italy
  • 3Center for Remote Sensing of the Earth (CERSE), Rome Italy

The Atlantic Niño, also referred to as Atlantic zonal mode, equatorial Atlantic mode or, sometimes, El Niño’s little brother, is an important source of the year-to-year variability of the tropical Atlantic, consisting in an irregular oscillation of the Sea Surface Temperature (SST) in the eastern part of the basin. The physical mechanism underlying the activation of the oscillation is a matter of debate; some theories, termed dynamical, explain the Atlantic Niño as an ENSO-like phenomenon initiated by internal waves excited by the relaxation of easterly winds in the western tropical Atlantic and/or by the reflection of Rossby waves impinging the western Atlantic boundary. Some other theories, called thermodynamic, attribute the eastern tropical Atlantic SST variability to thermodynamic processes induced by off equatorial heat fluxes. Here, by using Sea Surface Height (SSH) data provided by orbiting altimeters and heat fluxes deduced from horizontal currents and Temperature-Salinity (TS) profiles provided by the Copernicus project, we show that, at least in the period Jan 1993-Dec 2021, both mechanisms were active and two sub-periods can be identified: the first, between Jan 1993 and Dec 2009, in which the eastern tropical Atlantic temperature variability can be explained reasonably well in terms of heat advected from the south by horizontal currents and, another period, between Jan 2010 and Dec 2021, in which the temperature variability of the eastern tropical Atlantic is explained by displacements of the thermocline induced by internal Kelvin waves propagating along the equatorial wave-guide. Finally, by using daily SST anomaly data over the period Jan 1940-Dec 2022, we show that the SST variability in the eastern tropical Atlantic and in the Angola-Benguela upwelling region are well correlated with each other with a lag slightly lower than a month and the SST in the Angola-Benguela region leading, suggesting a positive feedback between off equatorial heat availability and increasing SST in the eastern tropical Atlantic.

How to cite: Carniel, C. E., Borzelli, G. L., Russo, A., and Carniel, S.: The Atlantic sibling: a reconciling vision on the nature of El Niño’s “little brother” , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17832, https://doi.org/10.5194/egusphere-egu24-17832, 2024.