EGU24-1790, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-1790
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Surface sediment permeability and reactivity in a shallow coastal environment

Stefan Forster1, Hanna Schade2, and Werna Werna3
Stefan Forster et al.
  • 1Rostock University, Inst. for Biosciences, Marine Biology, Rostock, Germany (stefan.forster@uni-rostock.de)
  • 2BioConsult SH GmbH & Co. KG, Husum, Germany (h.schade@bioconsult-sh.de)
  • 3Rostock University, Inst. for Biosciences, Marine Biology, Rostock, Germany 8werna.werna@uni-rostock.de)

Coastal sediments are frequently permeable due to their relatively large grains size. Knowledge on exchange processes across the sediment-water interface and metabolism in these sediments is limited however. We characterize permeable sediments at about 5 m water depth in a coastal stretch of ~3.5 km² at the southern Baltic coast off Germany. Permeability ranged from 1.4 .10-12 m² to 11.3 .10-11 m² (organic content: 0.1% - 0.2% dry mass). We determined total oxygen uptake, TOU, of 10 – 28 mmol O2 m² d-1 from in situ measurements in the dark. Benthic net primary production determined in situ varied between 1 - 14 mmol O2 m² d-1.
We observed an increase in volumetric oxygen uptake rates in flow-through experiments when highly reactive glucose was supplied as substrate, pointing to the pivotal role of reactive organic substrate availability. However, we could detect only marginally enhanced TOU (uptake doubled at one out of three locations) when applying stirring rates inducing pore water flow in benthic chambers under natural conditions. We conclude that stimulating effects of permeability associated with pore water flow are not detectable in benthic exchange rates below a threshold of 7 .10-11 m² under field conditions. This threshold is higher than previously reported.
Ex situ experiments demonstrated that the distribution of oxygen in the sediment was affected by photosynthetic activity of microphytobenthos and by pore water flow. Benthic primary production determined by the dark-light shift method exceeded the summed fluxes of oxygen into the water and into the sediment driven by concertation gradients, and increased with light intensity as well as with organic substrate availability. These findings indicate that calculated net ecosystem metabolism can shift from autotrophy to heterotrophy owed to an increased consumption within the sediment during advection. We argue that under advective conditions the export flux of photosynthetically produced oxygen may differ from the flux under diffusive conditions. This may seriously impair photosynthesis rate determinations obtained from incubation experiments.

How to cite: Forster, S., Schade, H., and Werna, W.: Surface sediment permeability and reactivity in a shallow coastal environment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1790, https://doi.org/10.5194/egusphere-egu24-1790, 2024.