Predicting Global Seafloor Organic Carbon Burial Rates: A Deep Learning Approach with Uncertainty Quantification
- 1GEOMAR Helmholtz Zentrum Kiel, Department of Marine Biogeochemistry, Kiel, Germany (nparameswaran@geomar.de)
- 2MARUM Zentrum für Marine Umweltwissenschaften, Bremen, Germany
- 3Christian-Albrechts-Universität zu Kiel, Institute of Applied Mathematics, Kiel, Germany
- 4Helmholtz Zentrum Hereon, Model-Driven Machine Learning, Geesthacht, Germany
How to cite: Parameswaran, N., Burwicz-Galerne, E., Gonzalez, E., Wallmann, K., Greenberg, D., and Braack, M.: Predicting Global Seafloor Organic Carbon Burial Rates: A Deep Learning Approach with Uncertainty Quantification, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18005, https://doi.org/10.5194/egusphere-egu24-18005, 2024.