EGU24-1802, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-1802
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

The shear deformation zone along the KTFZ: implications for faulting properties

Vasileios Karakostas and Eleftheria Papadimitriou
Vasileios Karakostas and Eleftheria Papadimitriou
  • Aristotle University of Thessaloniki, ELKE AUTH, Geophysics, Thessaloniki, Greece (vkarak@geo.auth.gr)

The Kefalonia Transform Fault Zone (KTFZ) in central Ionian Islands (Kefalonia and Lefkada Islands), Greece, a dextral strike slip transform zone, exhibits the fastest rates of relative plate motion in the Mediterranean. Strong (Mw>6.0) earthquakes associated with the fault segments comprised in KTFZ are frequent as historical information and instrumental record reveals. Four main shocks of this order magnitude, among other earthquakes of Mw>5.0 occurred since 2003 on almost along strike adjacent fault segments, with high aftershock productivity extended far beyond the fault tips forming aftershocks zones remarkably wider than expected of strike slip faulting. This enhanced aftershock seismicity is associated with the shear deformation zone surrounding the mainshock rupture plane. It has been suggested that it results from the reactivation of secondary faults, its width decreases as a power law with cumulative fault displacement being narrower around mature faults than around immature faults. As the structural maturity may have a strong impact on earthquake behavior, such as magnitude, stress drop, distribution of slip, rupture velocity, ground motion amplitude, and number of ruptured segments, as prior studies have suggested, we aim at investigating the shear deformation zone along KTFZ. We used the relocated aftershock seismicity of the four recent (2003 – 2015) strong (Mw>6.0) main shocks that occurred on almost along strike positioned strike slip faults for defining the fault width in conjunction with the fault length, as we have already done in the case of the 2015 Lefkada main shock, and the activation of secondary faults, most probably triggered by stress changes and stress redistribution due to the main shock coseismic slip. Detailed slip models, when available, are engaged for this scope for investigating possible triggering of the secondary fault segments taking part in each seismic excitation, due to the stress transfer, taking also into account the stress sensitivity on the geometry and faulting properties of the minor faults, along with the accurately relocated aftershock seismicity. After the main fault width definition, we investigated the decrease of aftershock frequency and spatial density as a function of distance from the main fault.

Acknowledgments: Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission – Euratom. Neither the European Union nor the granting authority can be held responsible for them.

How to cite: Karakostas, V. and Papadimitriou, E.: The shear deformation zone along the KTFZ: implications for faulting properties, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1802, https://doi.org/10.5194/egusphere-egu24-1802, 2024.