Quantifying the role of ocean biogeochemistry on the deglacial atmospheric CO2 rise using transient simulations with MPI-ESM
- 1Max Planck Institute for Meteorology, Hamburg, Germany
- 2Universität Hamburg, Hamburg, Germany
- 3Helmholtz-Zentrum Hereon, Geesthacht, Germany
The ocean plays an essential role in the rise of atmospheric CO2 by about 90 ppmv during the last deglaciation. The deglacial oceanic CO2 outgassing is jointly controlled by the physical, biological and geochemical processes, which affect the variations in ocean circulation, biological carbon pump and alkalinity inventory. Transient simulations of climate-carbon feedback, particularly using the comprehensive Earth System Models, are instrumental tools to quantify the contribution of different processes and their interactions. Nonetheless, knowledge gaps still exist in the deglacial variations of oceanic carbon and nutrient cycling because considerable model uncertainties arise from the choices of model processes and parameters, and the proxy data is too sparse to fully constrain the model outcome.
We conduct transient simulations for the last deglaciation with the Max Planck Institute Earth System Model (MPI-ESM) and examine the impact of different model tuning of the global ocean biogeochemistry component and a sediment module on the deglacial CO2 outgassing. The atmospheric CO2 is prognostically computed for the carbon cycle, considering only the atmosphere and ocean compartments, and it is prescribed for radiation computation. We force the model with reconstructions of atmospheric greenhouse gas concentrations, orbital parameters, ice sheet and dust deposition. In line with the physical ocean component, we account for the automatic adjustment of marine biogeochemical tracers in response to changing bathymetry and coastlines related to deglacial meltwater discharge and isostatic adjustment.
We find the deglacial CO2 outgassing is mainly driven by the sea surface warming in MPI-ESM, whereas variations in surface alkalinity and DIC have a relatively small contribution (~18%). Furthermore, the parameterisation of organic debris remineralisation considerably affects the deglacial increase in the global NPP due to different recycling rates of nutrients in the upper ocean. When a longer lifetime of dissolved organic matter is prescribed, the dissolved organic carbon pool in the glacial ocean increases, further facilitating the glacial ocean carbon sequestration. Including an interactive sediment module strongly impacts surface alkalinity due to input-sedimentation imbalance, affecting air-ocean CO2 flux. Thus, attention has to be given to tuning and adjustments regarding the input-sedimentation imbalance of alkalinity in ESMs to better represent proxy data and the deglacial oceanic CO2 outgassing.
How to cite: Liu, B. and Ilyina, T.: Quantifying the role of ocean biogeochemistry on the deglacial atmospheric CO2 rise using transient simulations with MPI-ESM, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18082, https://doi.org/10.5194/egusphere-egu24-18082, 2024.