Global Validation of the Data-Assimilative VERB-3D code
- 1GFZ German Research Centre for Geosciences, Space Physics and Space Weather, Germany (marina@gfz-potsdam.de)
- 2University of Potsdam, Potsdam, Germany
- 3University of California, Los Angeles, CA, USA
Radiation belt electron dynamics show high variability in space and time during geomagnetically active periods, which could potentially damage the satellites though deep dielectric and surface charging. In the past years, numerous physics-based models have been developed to describe the evolution of phase space density in the radiation belts, however they are subject to uncertainties and errors in the initial and boundary conditions. Data assimilation provides to be a reliable technique for blending satellite data and the output of physics-based models, creating a more reliable reconstruction with all the available information about the environment.
We present a preliminary global validation of the data-assimilative VERB-3D code for a geomagnetic event in September 2017. We assimilated Arase measurements into the VERB-3D code via a split-operator Kalman Filter, and validated the results against measurements obtained from the RBSP satellites. The results provide very valuable insights into the accuracy and performance of the data assimilative model and its capability to replicate the radiation belt environment, showing the great potential for data assimilation techniques in space weather applications.
How to cite: García Peñaranda, M., Shprits, Y., Castillo Tibocha, A. M., Drozdov, A., and Mátyás Szabó-Roberts, M.: Global Validation of the Data-Assimilative VERB-3D code, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18156, https://doi.org/10.5194/egusphere-egu24-18156, 2024.