EGU24-18193, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-18193
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Unified Vocabularies for Geo- and Cosmochemical Data Systems

Leander Kallas1, Marthe Klöcking1,2, Lucia Profeta3, Stephen Richard3,4, Annika Johansson3, Kerstin Lehnert3, Manja Luzi-Helbing5,6, Bärbel Sarbas1, Hannah Sweets3, Dieter Garbe-Schönberg7, Matthias Willbold1, and Gerhard Wörner1
Leander Kallas et al.
  • 1Geoscience Center Göttingen, University of Göttingen, Göttingen, Germany (leander.kallas@uni-goettingen.de)
  • 2Institute of Mineralogy, University of Münster, Münster, Germany
  • 3Lamont-Doherty Earth Observatory, Columbia University, Palisades, USA
  • 4U.S. Geoscience Information Network, USA
  • 5Geo.X – Research Network for Geosciences in Berlin and Potsdam, Germany
  • 6GFZ German Research Centre for Geosciences, Potsdam, Germany
  • 7Kiel University, Kiel, Germany

Global compilations of geo- and cosmochemical data are increasingly leveraged to address exciting new research questions through data-analytics and machine-learning approaches. These invaluable datasets are maintained and made accessible as synthesis databases, such as GEOROC and PetDB catering to terrestrial igneous and metamorphic rocks; AstroMat Data Synthesis encompassing diverse astromaterial samples; and GeoReM a comprehensive resource for geochemical, environmental and biological reference materials. The GEOROC and PetDB databases for igneous and metamorphic rocks collectively aggregate data from thousands of publications, combining over 42 million single data values (major and trace elements, stable and radiogenic isotope ratios, radiometric ages) for bulk rock, glass, as well as minerals and their inclusions.

The diverse focus of these data systems include data from different sources and metadata makes data integration and interoperability challenging. The DIGIS and EarthChem projects are working towards designing machine-readable unified vocabularies for their data systems to achieve full interoperability. These vocabularies, associated with primary chemical data as well as geospatial, analytical and sample metadata, encompass many categories describing geographic location, sampling technique, lithology and mineral types, geological and tectonic setting, as well as analytes, analytical methods, reference materials, and more.

Wherever possible, external machine- and/or human-readable external vocabularies from respected authorities are incorporated, such as MinDat’s "Subdivisions of Rock," the International Mineralogical Association’s "List of Minerals" (Warr, 2021), and the International Union of Pure and Applied Chemistry’s chemical terminologies. For remaining categories, a set of local vocabularies are developed by our group (e.g. analytical methods, see Richard et al. 2023). The collaborative effort between DIGIS, EarthChem, and the Astromaterials Data System is leading to an advanced vocabulary ecosystem relating samples, data, and analytical methods in geo- and cosmochemical research that reaches from local- to community-driven and, eventually global connections.

Establishing a globally accepted vocabulary not only contributes to building interoperability between our existing geo-and cosmochemistry synthesis databases, but will also help pave the way toward interoperability with the GeoReM database, linking data with analytical methods and reference materials to provide means for data quality control and assessment of analytical uncertainty.

Finally, the unified vocabularies of EarthChem, GEOROC, and GeoReM will advance the creation of a global network of geochemical data systems as promoted by the OneGeochemistry initiative (Klöcking et al., 2023; Prent et al. 2022), connecting and integrating the broadest range of geoanalytical data generated, for example, in studies of environmental samples, archeological artefacts, or geohealth matters.

We report on these goals, achievements, state of advance, and challenges and seek community engagement and feedback.

 

References

Klöcking, M. et al. (2023). Community recommendations for geochemical data, services and analytical capabilities in the 21st century. In Geochimica et Cosmochimica Acta (Vol. 351, pp. 192–205).

Prent, A. et al. (2023) Innovating and Networking Global Geochemical Data Resources Through OneGeochemistry. Elements 19, Issue 3, pp. 136–137.

Richard, S. et al. (2023) Analytical Methods for Geochemistry and Cosmochemistry. Concept Scheme for Analysis Methods in Geo- and Cosmochemistry. Research Vocabularies Australia.

Warr, L. N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320.

How to cite: Kallas, L., Klöcking, M., Profeta, L., Richard, S., Johansson, A., Lehnert, K., Luzi-Helbing, M., Sarbas, B., Sweets, H., Garbe-Schönberg, D., Willbold, M., and Wörner, G.: Unified Vocabularies for Geo- and Cosmochemical Data Systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18193, https://doi.org/10.5194/egusphere-egu24-18193, 2024.