EGU24-18244, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-18244
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

The effects of extreme rainfall trends on compound flood risk: A case study over Greater Boston

Stergios Emmanouil1,2, Andreas Langousis3, Elizabeth Perry4, Luke Madaus5, Joshua Hacker5, and Emmanouil N. Anagnostou1,2
Stergios Emmanouil et al.
  • 1University of Connecticut, Civil and Environmental Engineering , Storrs, CT, United States of America (stergios.emmanouil@uconn.edu)
  • 2University of Connecticut, Eversource Energy Center, Storrs, CT, United States of America
  • 3University of Patras, Civil Engineering, Patras, Greece
  • 4Jupiter Intelligence, New York, NY, United States of America
  • 5Jupiter Intelligence, Boulder, CO, United States of America

Climate adaptation strategies and vulnerability assessments over coastal areas require proper modeling of the interplay and nonstationary nature of the physical processes involved in compound flooding. As a result of the reported upward trajectories of rainfall intensity over the Contiguous United States, flood risk estimates are also expected to vary. However, given the systematic and random inconsistencies of traditional extreme rainfall estimation approaches and the increased uncertainty surrounding climate model projections, the effects of climate change on the estimation of flood risk from compound hazards remains an open question. In this effort we aim to: (a) combine the observed rainfall intensity trends from the past 40 years (i.e., from 1979 to 2020; see also Emmanouil et al., 2022) across various scales of temporal averaging, with storm surge and antecedent streamflow conditions, to estimate how flood inundation levels evolve, and (b) assess the effects of those trends on flood risk estimation within areas affected by compound hydrological events. In doing so, we use hydrodynamic simulations of reported flood occurrences over the Greater Boston area (MA, United States) for a period of 20 years (i.e., from 2000 to 2019), along with the parametric modeling scheme proposed by Emmanouil et al. (2023). The latter has been shown to properly weight and link the exceedance probabilities of the main flood-driving mechanisms to the return periods of the maximum inundation levels, thus providing a sufficient depiction of the conditions over the studied domain and allowing for estimation beyond the range covered by the available simulations. Assuming that the dependence structure of the driving mechanisms remains time-invariant, our findings aim to enhance the understanding of how flood risk from compound hazards has been affected by extreme rainfall trends induced by the changing climatic conditions and, therefore, support decision-making on the design and protection of critical infrastructure.

References

Emmanouil, S., Langousis, A., Nikolopoulos, E. I., & Anagnostou, E. N. (2022). The Spatiotemporal Evolution of Rainfall Extremes in a Changing Climate: A CONUS‐Wide Assessment Based on Multifractal Scaling Arguments. Earth’s Future, 10(3). https://doi.org/10.1029/2021ef002539

Emmanouil, S., Langousis, A., Perry, E., Madaus, L., Hacker, J., and Emmanouil, E.N. (2023) Decomposing the effects of compound mechanisms on flood risk estimation for urban environments: A case study over Greater Boston, UrbanRain23, 12th International Workshop on Precipitation in Urban Areas, Pontresina, Switzerland, 29 November – 2 December 2023.

How to cite: Emmanouil, S., Langousis, A., Perry, E., Madaus, L., Hacker, J., and Anagnostou, E. N.: The effects of extreme rainfall trends on compound flood risk: A case study over Greater Boston, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18244, https://doi.org/10.5194/egusphere-egu24-18244, 2024.