EGU24-18394, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-18394
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Groundwater quality in two coastal fens and the influence of storm surge flooding and rewetting with seawater

Erwin Don Racasa1, Haojie Liu1, Miriam Toro1,2, and Manon Janssen1
Erwin Don Racasa et al.
  • 1Soil Physics, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
  • 2Landesamt für Umwelt (Schleswig-Holstein), Flintbek, Germany

Coastal peatlands are unique ecosystems situated at the interface of land and sea. Past human activities, specifically drainage, have turned these carbon sink coastal regions into carbon sources. To mitigate climate change, recent management strategies focus on rewetting drained coastal peatlands. In this study, we aimed at characterizing surface and groundwaters in two coastal fens and examine the impacts of seawater input events caused by a storm surge (freshwater-rewetted) and rewetting with seawater (seawater-rewetted). Prior to the events, our findings reveal variable marine influence on surface and groundwater in the past which depends on distance from the coast, peat thickness, and possibly, drainage networks. After the storm surge, increases in specific conductivity (SC), chloride, and sulfate concentrations in surface waters persisted for up to a year. Increases in surface water dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations were also observed. In peat groundwater, a sustained increase in DOC concentrations that reached 526 mg DOC L-1 was observed at a shallower depth (max: -0.59 masl) while a delayed increase was observed at a deeper depth (max: -1.41 masl). High dissolved carbon concentrations were still observed in peat groundwater until the end of the observation period, three years after the storm surge. For the seawater-rewetted fen, significant changes in surface water properties were observed, which included SC, chloride, pH, DOC, DIC. The initial DOC concentrations in peat groundwater decreased, but later, showed the same high concentrations similar to the storm surge flooded fen. No apparent impacts to deeper sandy aquifers from both sites were observed. Overall, storm surge flooding impact on surface water properties lasted for a limited time while rewetting with seawater significantly and drastically changed the surface waters as the peatland was transformed into a lagoon-like environment. Peat groundwater properties in both sites did not change significantly, however, depth-dependent variable increases in DOC concentrations could be expected. The increases in DOC concentrations in peat groundwater were accompanied by increased SC and decreased pH conditions. Lastly, the ongoing salinization of seawater-rewetted fens may lead to brackish-rewetted environments with higher concentrations of seawater salts and potentially create new biogeochemical reactive mixing zones of ground- and seawater.

How to cite: Racasa, E. D., Liu, H., Toro, M., and Janssen, M.: Groundwater quality in two coastal fens and the influence of storm surge flooding and rewetting with seawater, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18394, https://doi.org/10.5194/egusphere-egu24-18394, 2024.

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 12 Apr 2024, no comments