EGU24-18533, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-18533
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Ecohydrological modelling on peatlands: scoping review and application of three process-based models to Irish raised bog restoration

Mariana Silva
Mariana Silva
  • Trinity College Dublin, Civil, Structural, and Environmental Engineering, Ireland (silvam@tcd.ie)

Peatland restoration and rehabilitation action has become more widely acknowledged as a necessary response to mitigating climate change risks and improving global carbon storage. Peatland ecosystems require restoration timespans on the order of decades and thus cannot be dependent upon the shorter-term monitoring often carried out in research projects. Hydrological assessments using geospatial tools provide the basis for planning restoration works as well as analysing associated environmental influences. “Restoration” encompasses applications to pre- and post-restoration scenarios for both bogs and fens, across a range of environmental impact fields. A scoping review was carried out to identify, describe, and categorise current process-based modelling uses in peatlands in order to investigate the applicability and appropriateness of eco- and/or hydrological models for northern peatland restoration. Two literature searches were conducted using the Web of Science entire database in September 2022 and August 2023. Of the final 211 papers included in the review, models and their applications were categorised according to this review’s research interests in 7 distinct categories aggregating the papers’ research themes and model outputs. Key themes emerging from topics covered by papers in the database included: modelling restoration development from a bog growth perspective; the prioritisation of modelling GHG emissions dynamics as a part of policymaking; the importance of spatial connectivity within or alongside process-based models to represent heterogeneous systems; and the emerging prevalence of remote sensing and machine learning techniques to predict restoration progress with little physical site intervention. Based on this assessment, CoupModel, DigiBog, and MPeat2D were calibrated for the case of Abbeyleix Bog, Co. Laois, Ireland (ongoing with results expected before April 2024). The exploration of subsequent simulations to represent varying peatland restoration conditions is discussed from an ecohydrological lens.

How to cite: Silva, M.: Ecohydrological modelling on peatlands: scoping review and application of three process-based models to Irish raised bog restoration, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18533, https://doi.org/10.5194/egusphere-egu24-18533, 2024.