EGU24-18617, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-18617
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Climate change impact on wheat yield in India: Study using CERES-wheat model

Achanya Lakshmanan1, Yogendra Shastri1,2, and Riddhi Singh1,3
Achanya Lakshmanan et al.
  • 1Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India (achanyalakshmanan30@gmail.com)
  • 2Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India (yshastri@iitb.ac.in)
  • 3Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India (riddhi@civil.iitb.ac.in)

Agriculture is highly dependent on climate because rainfall, temperature and sunlight are the primary determinants of crop development. Climate change driven effects such as variation in precipitation and changes in temperatures are likely to affect agricultural yields. Systematic planning of agricultural activities considering these effects is essential. As a first step towards this longer term objective, this work quantifies the effect of climate change on crop in short and long term in India. Wheat is chosen as the crop of interest. Madhya Pradesh, one of the leading wheat producing states in India, is the region under focus, and Betul district is selected for a initial studies. The CERES-wheat model in the Decision Support System for Agrotechnology Transfer (DSSAT) tool is used to estimate the impact of climate change on wheat yield. The CERES-wheat model has been calibrated and validated, and the calibrated parameters have been used to simulate wheat yield in the future. The base period for calculating base wheat yield is 2009-2019. Future wheat yields are calculated for two periods (2025-2055 and 2056-2085). The projected changes in precipitation, maximum temperature (Tmax) and minimum temperature (Tmin) in future compared to the base period are calculated using four different General Circulation Models (GCMs) and four Shared Socioeconomic Pathways (SSPs). To increase the study's robustness, 1000 samples are systematically generated using Latin Hypercube Sampling (LHS). A stochastic weather generator (WG), WeaGETS, is used to create a synthetic time series of climate variables. Using the 1000 different combinations of changes in climate variables, 1000 climate scenarios are generated using WeaGETS. The climate variables used to determine the relationship between climate and wheat yield were mean rainfall, rainfall variance, Tmax, and Tmin. Wheat yield ranged from 2065 to 3207 kg/ha during the baseline period, and it is expected to vary from 1629 to 3638 kg/ha between 2025 and 2055. Looking ahead to 2056-2085, wheat yields are estimated to range from 1363 to 3555 kg/ha. The sensitivity analysis results between climate variables and wheat yield for both periods suggest that wheat yield is positively correlated with mean rainfall and rainfall variance and negatively correlated with Tmax and Tmin. Maximum temperature has a significant negative correlation with wheat yield in both periods after excluding the effect of other climate variables. However, in the last stage of wheat yield development, the grain filling stage, Tmin is more critical than Tmax. These results highlight the need for systematic planning to manage negative impacts of climate change on wheat cultivation in India. These results will used as a basis for suggesting adaptation strategies to manage the impact of climate change on wheat yield.

How to cite: Lakshmanan, A., Shastri, Y., and Singh, R.: Climate change impact on wheat yield in India: Study using CERES-wheat model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18617, https://doi.org/10.5194/egusphere-egu24-18617, 2024.