EGU24-18643, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-18643
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Geospatial and remote sensing analysis for earthquake risk management: The case study of Ancient Olympia archaeological site. 

Stavroula Alatza, Nikolaos Stasinos, Nikolaos Stathopoulos, Marietta Papakonstantinou, Michail-Christos Tsoutsos, and Charalampos Kontoes
Stavroula Alatza et al.
  • National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, Operational Unit BEYOND-Centre of EO Research & Satellite Remote Sensing, Athens, Greece

The Western Greece is one of the most tectonically active regions in the Mediterranean Sea, due to the subduction of the African plate underneath the Eurasian plate. The past years, major earthquakes occurred in Western Greece, causing destructions and casualties. Ancient Olympia, located in the North West of the Peloponnese in Western Greece, combines a great cultural background with natural beauty and is also associated with the Olympic Games. It is among the most visited archaeological sites in Greece, as it combines cultural tourism, eco-tourism and sports tourism. However, the complex tectonic field of Western Greece, including the broader area around Ancient Olympia, raises awareness and dictates the adoption of preventive and recovery measures in case of an earthquake risk in Western Peloponnese. Therefore, we propose an emergency and recovery plan for an earthquake risk scenario, that will be implemented in the broader area around the archaeological site of Ancient Olympia. Satellite and geospatial data are processed to extract all necessary thematic information. Additionally, multi-temporal InSAR analysis of Sentinel-1 images, is performed to identify areas exposed to ground deformation phenomena, therefore vulnerable during an earthquake. Detailed thematic information layers, combined with the identification of ground instabilities in the wider area around Ancient Olympia, will contribute to an efficient evacuation and reconstruction plan. Since cultural heritage sites are often exposed to various hazards, including geohazards, preparedness, risk assessment and emergency management near cultural heritage sites, is of great importance for their protection and preservation.

 

Acknowledgements

The research was funded by the Working Programme 2021 under the Caroline Herschel Framework Partnership Agreement on Copernicus User Uptake.

How to cite: Alatza, S., Stasinos, N., Stathopoulos, N., Papakonstantinou, M., Tsoutsos, M.-C., and Kontoes, C.: Geospatial and remote sensing analysis for earthquake risk management: The case study of Ancient Olympia archaeological site. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18643, https://doi.org/10.5194/egusphere-egu24-18643, 2024.