EGU24-18710, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-18710
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Near-real-time maximum wave height estimates over the Mediterranean Sea

Charikleia L.G. Oikonomou and Gerasimos Korres
Charikleia L.G. Oikonomou and Gerasimos Korres
  • Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, Anavyssos Attiki, Greece (c.oikonomou@hcmr.gr)

The Med-WAV system of the Mediterranean component (MED MFC) of the Copernicus Marine Environment Service has consistently been providing high-resolution wave product analyses, forecasts, and reanalyses. Accurately predicting wave parameters, particularly during storms, is crucial for ensuring maritime safety, the resilience of offshore structures, and managing coastal hazards. Consequently, since November 2023, the Mediterranean Sea Waves Analysis and Forecast product (MEDSEA_ANALYSISFORECAST_WAV_006_017, Korres et al., 2023) has been delivering estimates of the maximum crest-to-trough height, utilising the methodology proposed by Benetazzo et al. (2021). The system's ability to represent short-term maximum wave statistics is assessed through a comprehensive evaluation against buoys positioned in the western part of the basin, accessible via Copernicus Marine in-situ TAC (2023) (product INSITU_GLO_WAV_DISCRETE_MY_013_045). The results confirm that the operational system adeptly estimates maximum wave height over the Mediterranean Sea in accordance with the quality metrics identified in previous literature.

References

Korres, G., Oikonomou, C., Denaxa, D., & Sotiropoulou, M. (2023). Mediterranean Sea Waves Analysis and Forecast (Copernicus Marine Service MED-Waves, MEDWAΜ4 system) (Version 1) [Data set]. Copernicus Marine Service (CMS). https://doi.org/10.25423/CMCC/MEDSEA_ANALYSISFORECAST_WAV_006_017_MEDWAM4

Benetazzo A., Barbariol F., Pezzutto P., Staneva J., Behrens A., Davison S., Bergamasco F., Sclavo M. and Cavaleri L. (2021). Towards a unified framework for extreme sea waves from spectral models: rationale and applications. Ocean Eng. 219, 108263. https://doi.org/10.1016/j.oceaneng.2020.108263

Copernicus Marine in situ TAC (2023). Copernicus Marine In Situ - Global Ocean Wave Observations Reanalysis. SEANOE. https://doi.org/10.17882/70345

How to cite: Oikonomou, C. L. G. and Korres, G.: Near-real-time maximum wave height estimates over the Mediterranean Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18710, https://doi.org/10.5194/egusphere-egu24-18710, 2024.