EGU24-18756, updated on 11 Mar 2024
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
Oral | Thursday, 18 Apr, 17:50–18:00 (CEST)
Room G2

A Preoperational Climate Service Information System: Addressing Technical Challenges and Enhancing User Engagement

Benedikt Gräler1, Johannes Schnell1, Katharina Demmich1, Yagmur Yildiz1, Merel Vogel1, Julia Kraatz1, Stefano Bagli2, and Paolo Mazzoli2
Benedikt Gräler et al.
  • 152°North Spatial Information Research GmbH, Münster, Germany
  • 2GECOsistema – Geographic Environmental Consulting, Rimini, Italy

Given the global scope of the current climate crisis, it is important that it be addressed in all sectors of society. From the increased risk of extreme weather events, to the heightened variability in climate patterns, data and knowledge sharing among both citizens and scientists alike is necessary for the planning of a sustainable future. Thus, the I-CISK project aims to create a human-centered, co-designed, co-created, co-implemented, and co-evaluated climate service (CS), which allows citizens, stakeholders, and decision-makers to take climate-informed decisions into their own hands. 

With helpful insight and discussions with I-CISK partners, and input from the seven Living Labs (LL), in the project’s current stage, the first preoperational CSs have been developed. User-stories which were derived from these discussions aided in the creation of the preoperational CSs, therefore ensuring that the data and information being displayed were tailored to the needs of end-users. 

One key challenge faced during the development of the CSs was presenting weather and climate variables in a way that could be easily-understood by end-users, while simultaneously addressing the questions posed by different stakeholders. Within this challenge, scale raised a significant issue; often-times users preferred to have data visualized on a local scale, however most forecast data was only available at a larger scale. This meant that forecast data had to be spatially corrected to fit this requirement. Another issue faced during development was to provide visualizations that enabled end-users to readily understand uncertainty forecasts; since forecasts for future weather patterns are calculated using different climate models, this means that there is a level of uncertainty when comparing various forecasts. Thus, there is not a single “truth”, and it was imperative that this be made clear when creating the preoperational CSs. To achieve this end, functional and sketch-based mock-ups were designed and discussed with end-users, and within the consortium. Then, based on feedback, they were iteratively further developed. 

Alongside the challenge of how to clearly visualize climate information, another key challenge was finding the most robust and relevant data sources to serve local information needs. We found that to meet data requirements, this meant not only gathering forecast data, but also observed historical data. With these data both displayed in the preoperational CSs, users were therefore able to compare past and future weather patterns with their own personal experience. This further helped users to understand the information that was being relayed in the CSs, and boosted their ability to assess climate predictions. 

In this presentation, we present the general approach of co-designing the preoperational CSs, and what we derived from it. We will also present the technical set-up to integrate the various data sources, the Docker-based semi-automated concept to deploy the individual CS applications in the cloud, and finally, next steps to engage users in current functional CS mock-ups. This work highlights the importance of creating CSs with a human-centered approach, and demonstrates how it has been done within the I-CISK project framework.

How to cite: Gräler, B., Schnell, J., Demmich, K., Yildiz, Y., Vogel, M., Kraatz, J., Bagli, S., and Mazzoli, P.: A Preoperational Climate Service Information System: Addressing Technical Challenges and Enhancing User Engagement, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18756,, 2024.