EGU24-18766, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-18766
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Deciphering Prediction Windows of Opportunity: A Cross Time-Scale Causality Framework  

Stefano Materia1, Constantin Ardilouze2, and Ángel G. Muñoz1
Stefano Materia et al.
  • 1Barcelona Supercomputing Center, Spain (stefano.materia@bsc.es)
  • 2CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

While subseasonal forecasts often exhibit limited skill across mid-latitudes, occasional improvements are observed in specific locations during certain periods, known as "windows of opportunity." Understanding the causal factors behind these windows is complex due to the diverse and interdependent nature of predictors, their spatial and temporal variability, and the challenges in establishing causality relationships. 

Traditional lagged-correlations methods provide only a partial view, lacking insights into causality. Based on previous work on the role of land surface processes, multi-model subseasonal model skill assessment and the use of causality metrics in predictions across timescales (e.g. Ardilouze et al., 2020, 2021; Materia et al 2020, 2022; Muñoz et al., 2023), here we propose an approach based on the Liang-Kleeman information flow, allowing the assessment of statistically significant causal links across various lead times.

Applied to reforecast and reanalysis data, our framework successfully identifies significant predictability drivers -involving sea-surface temperatures, atmospheric circulation and remote and local land-surface processes-, revealing their interference (interplay), evolving patterns and prevalence from seasonal to subseasonal scales. 

Furthermore, the comparison between reanalysis and reforecast results aids in assessing the capability of models to capture these causality features, suggesting additional ways to conduct model diagnostics. We illustrate here the theoretical background by showcasing the causal factors influencing a window of opportunity identified from a multimodel subseasonal reforecast.

 

References

Ardilouze, C., Materia, S., Batté, L., Benassi, M., & Prodhomme, C. (2020). Precipitation response to extreme soil moisture conditions over the Mediterranean. Climate Dynamics, 1, 1–16. https://doi.org/10.1007/S00382-020-05519-5/TABLES/2

Ardilouze, C., Specq, D., Batté, L., & Cassou, C. (2021). Flow dependence of wintertime subseasonal prediction skill over Europe. Weather and Climate Dynamics, 2(4), 1033-1049. https://doi.org/10.5194/wcd-2-1033-2021 

Materia, S., Muñoz, Á. G., Álvarez-Castro, M. C., Mason, S. J., Vitart, F., & Gualdi, S. (2020). Multi-model subseasonal forecasts of spring cold spells: potential value for the hazelnut agribusiness. Weather and Forecasting. https://doi.org/10.1175/waf-d-19-0086.1 

Materia, S., Ardilouze, C., Prodhomme, C., & et al. (2022). Summer temperature response to extreme soil water conditions in the Mediterranean transitional climate regime. Climate Dynamics, 58, 1943–1963. https://doi.org/10.1007/s00382-021-05815-8

Muñoz, Á. G., Doblas-Reyes, F., DiSera, L., Donat, M., González-Reviriego, N., Soret, A., Terrado, M., & Torralba, V. (2023). Hunting for “Windows of Opportunity” in Forecasts Across Timescales? Cross it. EGUGA, EGU-15594. https://doi.org/10.5194/EGUSPHERE-EGU23-15594 

How to cite: Materia, S., Ardilouze, C., and Muñoz, Á. G.: Deciphering Prediction Windows of Opportunity: A Cross Time-Scale Causality Framework  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18766, https://doi.org/10.5194/egusphere-egu24-18766, 2024.