EGU24-19010, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-19010
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

150 years of Etna Summit Craters through a photogrammetry-based time machine

Cantarero Massimo1, De Beni Emanuela1, Proietti Cristina1, Bonali Fabio Luca2, Palano Domenico1, Civico Riccardo3, and Paratore Mario1
Cantarero Massimo et al.
  • 1INGV Osservatorio Etneo (massimo.cantarero@ingv.it)
  • 2Università di Milano Bicocca
  • 3INGV - Roma

Etna is one of the most active volcanoes in the world, with almost continuous eruptive activity from its four summit craters resulting in frequent morphological variation of its upper area. The summit area is frequently site of effusive and explosive activity, but also of local flank collapses of the summit cones and pyroclastic flows with different triggering mechanisms. Such a dynamic environment requires a thorough understanding of its temporal evolution in order to properly assess the state of the volcano over time, and infer further insight into its potential hazard. Voragine (VOR), formerly called the Central Crater, is the oldest and has been depicted on topographic maps since at least 1865; the NE-Crater (NEC) cone was born in 1911; the Bocca Nuova started as a pit crater next to Voragine in 1968, and the SE-Crater (SEC) cone started in 1971. Since 2011, a new cone grew on the SEC eastern lower flank during a series of paroxysmal episodes and it progressive coalesced with the SEC cone. To properly model the temporal changes of the summit area, we exploited archival topographic maps and aerial photogrammetric stereo-pairs. This reconstruction started from the digitising and processing of topographic maps that were produced on 1897, 1932, and 1985. We also processed aerial stereo-images acquired since 1954. From these datasets we extracted Digital Elevation Models (DEMs) with 5-10 m pixel size. We integrated historical data with already available DEMs: the 1998 and 2001, interpolated from vector maps; the 2005, obtained from aerial photogrammetry; and the 2012, 2014 and 2015 derived from helicopter-acquired data. Finally, between 2017 and 2023 we performed UAS (unoccupied aerial systems) surveys to derive high-resolution DEMs and orthomosaics with sub-meter pixel size. This new multi-temporal Digital Elevation Models (DEMs), from ancient topographic maps and aerial photo as well as from recent and current UAS data, have been analysed through the ESRI ArcGIS software to reconstruct the topography and quantify the main morphological changes of Etna summit area. Our modelling increases the knowledge about the evolution and the behaviour of a frequently active volcano, thus enabling to mitigate the associated risks.

 

How to cite: Massimo, C., Emanuela, D. B., Cristina, P., Fabio Luca, B., Domenico, P., Riccardo, C., and Mario, P.: 150 years of Etna Summit Craters through a photogrammetry-based time machine, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19010, https://doi.org/10.5194/egusphere-egu24-19010, 2024.