EGU24-19011, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-19011
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Microbial phosphorus limitiation with soil age along a chronosequence on the Galapagos Islands

Katharina Maria Keiblinger1, Sebastian Socianu1,2, Maria Rechberger1, Martin Gerzabek1, and Franz Zehetner1
Katharina Maria Keiblinger et al.
  • 1University of Natural Resources and Life Sciences Vienna, Institute of Soil Research, Department of Forest and Soil Sciences, Vienna, Austria (katharina.keiblinger@boku.ac.at)
  • 2Institute of Soil Science, Leibnitz University Hannover, Germany

The Galápagos archipelago, a volcanic island chain, is comprised of a series of progressively older islands with increasingly weathered soils away from the volcanic hotspot. Volcanic soils are known for their high phosphate sorption capacity. In this study, we explore differences in soil microbial abundance and activity across a soil age gradient (1.5 to 1070 ka) to understand how soil microorganisms are affected by soil development, shifting soil characteristics and P sorption over extensive periods.

Basal respiration, substrate-induced respiration and microbial biomass P decreased with soil development, suggesting increasing nutrient limitation for soil microbes. Also, soil enzymatic stoichiometry revealed a limitation driven mainly by P and not by N or C. C- and N-acquiring exoenzyme activities peaked at 26 ka with lower activities in younger and older soils. Phosphatase activity increased with soil age, indicating microbial P limitation in the older soils. This is only partly in line with  P sorption-desorption characteristics along the studied weathering sequence. Phosphate sorption capacity was high in the 4.3 ka soils likely due to amorphous soil constituents. A change towards 2:1-type crystalline clays after 26 ka of soil weathering led to weaker P sorption and stronger desorption, and acidification and increased P occlusion in Al and Fe (hydr)oxides became an important factor for microbial P limitation in the older soils.

Our results reveal striking differences in soil properties on the Galápagos Islands, suggesting relatively little nutrient constraints for soil microbes, despite strong P sorption, in the younger volcanic soils but growing P limitation in the older, highly weathered soils. These observations have important bearings on nutrient cycling and may therefore also affect the evolution of plant and animal species on this unique archipelago.

How to cite: Keiblinger, K. M., Socianu, S., Rechberger, M., Gerzabek, M., and Zehetner, F.: Microbial phosphorus limitiation with soil age along a chronosequence on the Galapagos Islands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19011, https://doi.org/10.5194/egusphere-egu24-19011, 2024.