EGU24-1907, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-1907
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Democratizing soil erosion modelling: A Jupyter Notebook approach

Andres Peñuela
Andres Peñuela
  • Department of Agronomy, Universdad de Cordoba, Cordoba, Spain

Soil erosion is a widespread environmental challenge with far-reaching implications for agricultural productivity, water quality and ecosystem health. Addressing this complex issue requires the use of modelling tools that empower diverse stakeholders, such as researchers and decision-makers, to simulate soil erosion systems under different scenarios. For these tools to be effective, not only they need to make good predictions, but they need to be accessible and educational, so users, regardless of their technical skills and modelling expertise, can understand and even more importantly, trust the model. In traditional soil erosion modelling, the primary emphasis to build trust is by demonstrating the model’s ability to replicate past observations, and less attention is given to build trust by providing an educational and exploratory experience. We introduce a project that aims at democratizing soil erosion modelling, making it more accessible and trustworthy to researchers, educators, decision-makers, and local communities. Leveraging the versatility and accessibility of Jupyter Notebooks, we are developing iMPACT-erosion, a soil erosion modelling toolbox to support education, land management and informed decision making. A series of dedicated Notebooks not only explain and simulate the main soil erosion processes but guides users through the main steps to enhance the credibility of the model results, i.e. sensitivity analysis, model calibration, uncertainty analysis, model evaluation and scenario analysis. The integration of interactive visualization enhances this experience by facilitating exploration of both the model configuration and the soil erosion system's response under different scenarios/decisions. This model development approach is not confined to the field of soil erosion and offers the potential to facilitate knowledge transfer and collaboration between model developers and decision makers in various domains.

How to cite: Peñuela, A.: Democratizing soil erosion modelling: A Jupyter Notebook approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1907, https://doi.org/10.5194/egusphere-egu24-1907, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 20 Apr 2024, no comments