EGU24-19248, updated on 11 Mar 2024
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Segmentation and Tracking of Solar Eruptive Phenomena with Convolutional Neural Networks (CNN)

Oleg Stepanyuk and Kamen Kozarev
Oleg Stepanyuk and Kamen Kozarev
  • Bulgarian Academy of Sciences, Institure of Astronomy, National Astronomical Observatory, Bulgaria (

Solar eruptive events are complex phenomena, which most often include coronal mass ejections (CME), flares, compressive/shock waves, and filament eruptions. CMEs are large eruptions of magnetized plasma from the Sun’s outer atmosphere or corona, that propagate outward into the interplanetary space. Solar Energetic Particles (SEP) are produced through particle acceleration in flares or CME-driven shocks. Exact mechanisms behind SEP production are yet to be understood, but it is thought that most of their acceleration occurs in shocks starting in the low corona. Over the last several decades a large amount of remote solar eruption observations have become available from ground-based and space-borne instruments. This has required the development of software approaches for automated characterization of eruptive features. Most solar feature detection and tracking algorithms currently in use have restricted applicability and complicated processing chains, while the complexities in engineering machine learning (ML) training sets limit the use of data-driven approaches for tracking or solar eruptive related phenomena. Recently, we introduced a hybrid algorithmic—data driven approach for characterization and tracking of solar eruptive features with the improved wavelet-based, multi-instrument Wavetrack package (Stepanyuk, J. Space Weather Space Clim. (2024)), which was used to produce training datasets for data driven image segmentation with convolutional neural networks (CNN). Its perfomance was shown on a limited set of SDO AIA 193A instrument data perfoming segmentation of EUV and shock waves. Here we extend this approach and present an ensemble of more general CNN models for data-driven segmentation of various eruptive phenomena for the set of ground-based and remote instruments data. We discuss our approach to engineering training sets and data augmentation, CNN topology and training techniques. 

How to cite: Stepanyuk, O. and Kozarev, K.: Segmentation and Tracking of Solar Eruptive Phenomena with Convolutional Neural Networks (CNN), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19248,, 2024.

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 14 Apr 2024, no comments