EGU24-19308, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-19308
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Evaluation of remote sensing actual evapotranspiration products for hydrological modeling applications

Matěj Orság1, Milan Fischer1, Almudena García-García2, Jian Peng2, Luis Samaniego3, and Miroslav Trnka1
Matěj Orság et al.
  • 1Global Change Research Institute CAS, Brno, Czechia (orsag.matej@gmail.com)
  • 2Department of Remote Sensing, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
  • 3Department Computational Hydrosystems, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany

Evapotranspiration (ET) is one of the main environmental variables for the study of land-atmosphere interactions due to its interconnection with the energy and water balance at the land surface. Despite the dedicated effort of the remote sensing community to estimate the magnitude of ET at global scales, the uncertainties and differences between products are still very large, especially when comparing ET products with different spatial resolutions. Here, we designed a round-robin experiment to determine the product or products most suitable for future integration in hydrological modeling. The evaluation is performed using eddy covariance measurements as reference and point-scale downscaling (PSD) benchmarking criteria to identify the added value of the high-resolution products. The eddy covariance measurements of latent and sensible heat fluxes are known to not close the surface energy budget. Therefore, the use of eddy covariance measurements as a reference could have important consequences for the later use of ET products in assimilation approaches. Therefore, two main strategies to deal with the energy balance closure problem are considered here. Firstly, we considered three energy balance closure scenarios – (i) assigning the energy balance residuum to sensible heat flux; (ii) distributing the residuum to both turbulent energy fluxes by preserving their ratio, i.e. Bowen ratio; (iii) assigning the entire residuum to latent heat flux. While the first case has no impact on ET, the two remaining ones lead to an increase in ET. Secondly, the use of the triple collocation method, which does not require a reference dataset, will be explored to complement these results. Despite these efforts to identify the best ET product for the integration of satellite ET products in hydrological models, we cannot conclude that the products reaching the best metrics in this evaluation will be the products adding more value to the assimilation approach. Therefore, further experiments should be designed to test if the products selected in the round-robin exercise are indeed improving the performance of hydrological models or on the contrary other ET products are more suitable for assimilation approaches. We acknowledge support from AdAgriF - Advanced methods of greenhouse gases emission reduction and sequestration in agriculture and forest landscape for climate change mitigation (CZ.02.01.01/00/22_008/0004635).

How to cite: Orság, M., Fischer, M., García-García, A., Peng, J., Samaniego, L., and Trnka, M.: Evaluation of remote sensing actual evapotranspiration products for hydrological modeling applications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19308, https://doi.org/10.5194/egusphere-egu24-19308, 2024.